
LPA-Speech: An Interface Between

LPA-Prolog and Microsoft SAPI

Arlo Lyle
Artificial Intelligence Center

The University of Georgia
http://www.ai.uga.edu

February 8, 2006

1 Introduction

This paper describes the implementation and use of LPA-Speech, an interface
between LPA-Prolog and Microsoft SAPI (Speech Application Programming
Interface). LPA-Speech is an extension of SWI-Speech created by Jonathan
McClain for PRONTO (Prolog Natural Language Toolkit), a package cre-
ated by the Artificial Intelligence Center at the University of Georgia. It is
fully compatible with LPA-Prolog version 4.11 and later and Microsoft SAPI
version 5.1. This paper is divided into discussion of how to use LPA-Speech
as well as the implementation of LPA-Speech.

1.1 Requirements

To use LPA-Speech it is necessary to have LPA-Prolog version 4.11 or later
and Microsoft SAPI version 5.1 installed. For speech recognition, a func-
tioning recognition profile is necessary. Recognition profiles are maintained
under Speech in the Control Panel.

1

2 Using LPA-Speech

The following section describes how to use LPA-Speech within LPA-Prolog
applications. The LPA-Speech package consists of three files, LPA Speech.pl,
lpa speech.dll and registry.dll. These files must be contained in the same
directory while being used. To begin using LPA-Speech, load LPA Speech.pl

into Prolog as follows:

:- ensure_loaded('LPA_Speech.pl').

LPA Speech.pl will handle the process of loading and controlling the C++
functions contained in lpa speech.dll.

2.1 Speech Recognition

LPA Speech.pl allows for the control of speech recognition using the pred-
icate listen/1. listen/1 accesses SAPIs speech recogntion engine via
lpa_speech.dll, listens for a line of speech input, and returns the input
in the form of a compact string. An example of a query to listen/1 is
included below:

?- listen(Sentence).

Sentence = `Hello`

2.2 Speech Synthesis

LPA-Speech provides the user with two predicates for the control of speech
synthesis, speak/1 and speak_with_attributes/1. These predicates differ
by the amount of control over the speech output they provide. speak/1

uses the default voice settings of SAPI, giving the user no control over how
the final output sounds. Both predicates allow input to be in the form of a
character list, compact string, or a quoted atom. Thus, the following three
queries speak “Hello world” with the default voice settings using speak/1:

?- speak("Hello world").

?- speak(`Hello world`).

?- speak('Hello world').

2

On the other hand, speak_with_attributes/1 allows the user to set the
voice qualities desired for a particular application. Because the likliehood of
two different machines having the same voices installed on them is very small,
SAPI does not allow for the specification of the exact voice to be used for
speech output. Instead, it gives users control over voice output through the
use of attributes. LPA-Speech provides control over four different attributes
related to voice output, volume, rate of speech, age, and gender.

The volume of speech output is controlled using the predicate set_volume/1.
The range of values for the volume attribute is 0 to 100, where 0 is the qui-
etest setting and 100 is the loudest setting. Similarly, the rate of speech is
controlled by the predicate set_rate/1. The range of values for the rate of
speech is -10 to 10, where -10 is the slowest setting, 10 is the fastest setting,
and 0 is average. The following example speaks “Hello world” at an average
rate of speech and at full volume:

set_rate(0),

set_volume(100),

speak_with_attributes("Hello world").

The age and gender attributes are controlled by the predicates
set_age(+Age,+Condition) and get_gender(+Gender,+Condition). The
settings of these attributes are used to search through the Windows Registry
for an appropriate voice. For both of the above predicates, the condition
value can be set to either optional or required. If the condition value is set to
required the search will only return voices that match the required attribute.
If no voices match the required attributes, then the default voice is returned.
On the other hand, if the condition value is set to optional the search will
return voices that do not match the optional attributes. However, voices that
match the optional attributes are preferred over those that do not. The age
attribute must be set to one of the following age groups: child, teen, adult,
or senior. The gender attribute must be set to either male or female. The
following example searches for an adult male voice, where the adult attribute
is required and the male attribute is optional and speaks “Hello world”:

set_age(adult,required),

set_gender(male,optional),

speak_with_attributes("Hello world").

3

3 Implementation

The development of LPA-Speech can be divided into two parts, the devel-
opment of C++ functions to control SAPI, and creating the interface be-
tween LPA-Prolog and the C++ functions. LPA-Speech consists of a DLL
(Dynamic Link Library) file containing a number of functions written in
C++ which can be accessed externally by Prolog or any other programming
language that provides support for DLL files and a companion Prolog file
containing predicates to access the C++ functions.

3.1 Creating the DLL

Each Prolog predicate for either speech recognition or synthesis corresponds
to a C++ function in the DLL file. The DLL files is written just like any other
C++ program except that the functions which are to be accessed externally
by Prolog are declared as follows:

extern "C" __declspec(dllexport) char * lpa_listen();

In this example lpa_listen(), which implements the predicate listen,
takes no arguments, but returns a character list, which in this case will
be returned to Prolog in the form of a memory address. Any other functions
used within the DLL file but not used externally are declared and defined as
usual.

3.1.1 Speech Recognition

Before speech recognition is able to occur, the recognition engine and gram-
mar must be initialized. Once this is accomplished, the method for listening
is quite simple as can be seen below from this piece of the lpa_listen()

function:

CComPtr<ISpRecoResult> cpResult;

while (SUCCEEDED(hr = BlockForResult(cpRecoCtxt, &cpResult))) {

cpGrammar->SetDictationState(SPRS_INACTIVE);

CSpDynamicString dstrText;

char * mystring;

4

if (SUCCEEDED(cpResult->GetText(SP_GETWHOLEPHRASE,

SP_GETWHOLEPHRASE, TRUE, &dstrText, NULL))) {

mystring = dstrText.CopyToChar();

cpResult.Release();

return mystring;

}

cpGrammar->SetDictationState(SPRS_ACTIVE);

}

This code loops until the recognition engine has finished and returns a result
to dstrText. The text in dstrText is then copied to the character list
mystring which is returned to Prolog as an address in memory.

3.1.2 Speech Synthesis

The following function, lpa_speak_no_attr, takes a character list as input
and speaks it using the default voice settings for SAPI:

void lpa_speak_no_attr(char * mystring) {

ISpVoice * pVoice = NULL;

if (FAILED(::CoInitialize(NULL)))

return;

HRESULT hr = CoCreateInstance(CLSID_SpVoice, NULL, CLSCTX_ALL,

IID_ISpVoice, (void **)&pVoice);

if(SUCCEEDED(hr)) {

hr = pVoice->Speak((CSpDynamicString)mystring, 0, NULL);

pVoice->Release();

pVoice = NULL;

}

::CoUninitialize();

}

This method begins by creating an instance of type ISpVoice called pVoice.
Once pVoice is initialized, the method simply casts the character list into a

5

SAPI defined type called CSpDynamicString and feeds it to pVoice which
speaks the input.

SAPI provides users with the ability to control certain characteristics of
speech output. In this way, it is possible to override the default settings and
select the specific type of voice to be used. Control over these characteris-
tics falls into two categories, basic output control and attribute-based voice
selection.

lpa_speak like lpa_speak_no_attr takes a character list as input and
speaks it, but also takes several other arguments that correspond to the set-
tings SAPI allows the user to modify. As mentioned previously these settings
include rate of speech, volume, gender, and age. The following example taken
from lpa_speak illustrates how to set the rate of speech to its highest speed.

hr = pVoice->SetRate(10);

Setting the volume works in an similar way.
The age and gender attributes are modified in a slightly different way.

Since SAPI usually comes standard with a variety of different voices it also
provides a way to control what voice gets chosen for speech output. This is
done through the use of attributes. Attributes are information relating to
each voice that is stored in the Windows Registry. These attributes can be
used to search through all of the available voices and choose the one that best
matches. This is done using a provided method called SpFindBestToken.
When using SpFindBestToken, there are two categories of attributes that are
used, required attributes and optional attributes. SpFindBestToken returns
only voices that match all of the required attributes. If SpFindBestToken is
unable to find any voices that match all of the required attributes, the default
voice is chosen. Optional attributes on the other hand, only influence the
voice that is chosen. Thus, if there are two voices that match all of the re-
quired attributes, the one with the most optional attributes that are also met
is the one that is returned by SpFindBestToken. A call to SpFindBestToken

appears in the following example:

hr = SpFindBestToken(SPCAT_VOICES, required, optional,

&pCurVoiceToken);

When SpFindBestToken is called, the attributes in the required and optional
variables must be in the following format:

"Age=Adult"

6

3.2 Prolog Interface

Once the DLL file has been created, it must be loaded into LPA-Prolog so
that the C++ functions are available for use. This is done using the built-in
predicate winapi/4 as follows:

winapi((kernel32,'LoadLibraryA'),[`lpa_speech.dll`],0,Handle)

Now the C++ functions mentioned in the previous section are available for
use within Prolog.

To call a C++ function in the DLL file in Prolog the winapi/4 must be
used. For example, a call to lpa_listen() is performed in Prolog as follows:

winapi((lpa_speech,lpa_listen),[],0,Address)

This tells Prolog to call lpa_listen from the lpa_speech DLL with an
empty list of arguments and to return any output to Address. Once the
memory address to the output character list is returned to Prolog the built-
in predicate wintxt/4 can be used to return the string as follows:

wintxt(Address,0,0,String)

Calls to lpa_speak_no_attr are performed similarly with a couple of
exceptions. lpa_speak_no_attr requires an input in the form of a character
list to be spoken and no value is returned. These changes can be noted in
the following call to lpa_speak_no_attr:

winapi((lpa_speech,lpa_speak_no_attr),[Sentence],0,_)

Calls to lpa_speak require even more arguments to be supplied as show
here:

winapi((lpa_speech,lpa_speak),[Sentence,Rate,Volume,Required,

Optional],0,_)

As before Sentence is a character list. Both Rate and Volume are integers.
As mentioned in the previous section Required and Optional are character
lists in the format of "Age=Adult". Again, no value is returned.

7

References

[1] FunctionX. Win32 Static DLL. Available online at
http://www.functionx.com/visualc/libraries/staticdll.htm.

[2] Logic Programming Associates. Documentation Files. Available online at
http://www.lpa.co.uk/dow doc.htm.

[3] McClain, Jonathan (2003). SWI-Speech: An Interface Between SWI-

Prolog and Microsoft SAPI. University of Georgia. Available online at
http://www.ai.uga.edu/mc/ProNTo.

[4] Microsoft. Microsoft Speech Technologies Website. Available online at
http://www.microsoft.com/speech.

8

