
A Fundamental Algorithm for Dependency Parsing

Michael A. Covington

Artificial Intelligence Center
The University of Georgia

Athens, GA 30602-7415 U.S.A.
mc@uga.edu

Abstract– This paper presents a fundamental algorithm for

parsing natural language sentences into dependency trees.

Unlike phrase-structure (constituency) parsers, this algo-

rithm operates one word at a time, attaching each word

as soon as it can be attached, corresponding to properties

claimed for the parser in the human brain. Like phrase-

structure parsing, its worst-case complexity is O(n3), but in

human language, the worst case occurs only for small n.

1 Overview.

This paper develops, from first principles, several vari-
ations on a fundamental algorithm for parsing natural
language into dependency trees. This is an exposition of
an algorithm that has been known, in some form, since
the 1960s but is not presented systematically in the ex-
tant literature.

Unlike phrase-structure (constituency) parsers, this
algorithm operates one word at a time, attaching each
word as soon as it can be attached. There is good evi-
dence that the parsing process used by the human mind
has these properties [1].

2 Dependency grammar.

2.1 The key concept.

There are two ways to describe sentence structure in
natural language: by breaking up the sentence into con-
stituents (phrases), which are then broken into smaller
constituents (Fig. 1), or by drawing links connecting

This paper first appeared in Proceedings of the
39th Annual ACM Southeast Conference (2001), ed.
John A. Miller and Jeffrey W. Smith, pp. 95–102.
Copyright 2001 Association for Computing Machinery
(www.acm.org). Further publication requires permis-
sion.

Figure 1: A constituency tree.

individual words (Figs. 2, 3). These are called con-
stituency grammar and dependency grammar re-
spectively.

Constituency grammar appears to have been in-
vented only once, by the ancient Stoics [12], from whom
it was passed through formal logic to linguists such
as Leonard Bloomfield, Rulon Wells, Zellig Harris, and
Noam Chomsky. It is also the basis of formal language
theory as studied by computer scientists.

Dependency grammar, on the other hand, has ap-
parently been invented many times and in many places.
The concept of a word-to-word link occurs naturally to
any grammarian who wants to explain agreement, case
assignment, or any semantic relation between words. De-
pendency concepts are found in traditional Latin, Ara-
bic, and Sanskrit grammar, among others. Computer
implementations of dependency grammar have attracted
interest for at least 40 years [9, 7, 8, 4, 5, 13], but there
has been little systematic study of dependency parsing,

1



Figure 2: A dependency tree is a set of links connecting
heads to dependents.

appparently due to the widespread misconception that
all dependency parsers are notational variants of con-
stituency parsers.

2.2 Dependency trees.

Whenever two words are connected by a dependency re-
lation, we say that one of them is the head and the other
is the dependent, and that there is a link connecting
them. In general, the dependent is the modifier, object,
or complement; the head plays the larger role in deter-
mining the behavior of the pair. The dependent presup-
poses the presence of the head; the head may require the
presence of the dependent.

Figure 2 shows the dependency structure of a sen-
tence. Essentially, a dependency link is an arrow point-
ing from head to dependent. The dependency structure
is a tree (directed acyclic graph) with the main verb as
its root (head).

Figure 3 shows a way to display the word order and
the tree structure at once. To get from a word to its
dependents in this kind of diagram, go downhill.

In what follows, a dependent that precedes its head
is called a predependent; one that follows its head, a
postdependent.

Figure 3: This representation of a dependency tree pre-
serves the word order while depicting the tree structure
plainly. To get from a head to its dependents, go down-
hill.

I shall say that a word is independent (headless)
if it is not a dependent of any other word.

Note that in the dependency tree, constituents
(phrases) still exist. Any word and all its dependents,
their dependents, etc., form a phrase. I shall say that
dependents, dependents of dependents, etc., are subor-
dinate to the original word, which in turn dominates
(is superior to) them.

A word comprises itself and all the words that it
dominates. That is, the head of a phrase comprises the
whole phrase.

2.3 Generative power.

In 1965, Gaifman [6] proved that dependency grammar
and constituency grammar are strongly equivalent —
that they can generate the same sentences and make the
same structural claims about them — provided the con-
stituency grammar is restricted in a particular way. The
restriction is that one word in each phrase is designated
its head, and the phrase has no name or designation
apart from the designation of its head.

That is tantamount to saying that a noun phrase
has to be built around a noun, a verb phrase around a
verb, and so forth. Just take the category name “noun”
or “verb,” add “phrase,” and you have the name of the
phrase that it heads. (In a pure constituency grammar,
NP and VP are atomic symbols not related to N and V,
a fact all too seldom appreciated.)

Linguists have accepted this proposed restriction for
other reasons; they call it X-bar theory [11]. Thus,
constituency grammar as currently practiced is very
close to being a notational variant of dependency gram-
mar. Figure 4 shows interconversion of dependency and
constituency trees. A bar over a category label indicates



Figure 4: Equivalent dependency and constituency trees.

that it labels a phrase rather than a word.

2.4 The appeal of dependency parsing.

In what follows I shall explore some parsing algorithms
that use the dependency representation. Please note
that I am not claiming any significant difference in gen-
erative power between dependency grammar and con-
stituency grammar; still less am I claiming that English,
or any other human language, “is a dependency lan-
guage” rather than a constituency language, whatever
that might mean. Nor do I address any technical as-
pects of constructing an adequate dependency grammar
of English. My concern is only the formalism. Prima
facie, dependency parsing offers some advantages:

• Dependency links are close to the semantic relation-
ships needed for the next stage of interpretation; it
is not necessary to “read off” head-modifier or head-
complement relations from a tree that does not show
them directly.

• The dependency tree contains one node per word.
Because the parser’s job is only to connect exist-
ing nodes, not to postulate new ones, the task of
parsing is in some sense more straightforward. (We
will presently see that the actual order of complex-
ity is no lower, but the task is nonetheless easier to
manage.)

• Dependency parsing lends itself to word-at-a-time
operation, i.e., parsing by accepting and attaching
words one at a time rather than by waiting for com-
plete phrases.

Abney [1] cites several kinds of evidence that the
parser in the human mind operates this way. Con-
sider for example a verb phrase that may or may not
contain a direct object, such as sang loudly (vs. sang

songs loudly). A top-down constituency parser has
to choose a priori whether to expect the object or
not, before it has any way to know which choice is
right, and then has to backtrack if it guessed wrong;
that is spurious local ambiguity, apparently absent
in human parsing. A bottom-up constituency parser
cannot construct the verb phrase until all the words
in it have been encountered; yet people clearly begin
to understand verb phrases before they are over. My
dependency parser has neither problem; it accepts
words and attaches them with correct grammatical
relations as soon as they are encountered, without
making any presumptions in advance.

3 The parsing task.

The task of a dependency parser is to take a string of
words and impose on it the appropriate set of depen-
dency links. In what follows I shall make several as-
sumptions about how this is to be done.

3.1 Basic assumptions.

• Unity: The end product of the parsing process is a
single tree (with a unique root) comprising all the
words in the input string.

• Uniqueness: Each word has only one head; that is,
the dependency links do indeed form a tree rather
than some other kind of graph.

Most dependency grammars assume uniqueness,
but that of Hudson [10] does not; Hudson uses mul-
tiple heads to account for transformational phenom-
ena, where a single word has connections to more
than one position in the sentence.

• Projectivity (adjacency): If word A depends on
word B, then all words between A and B are also
subordinate to B. This is equivalent to “no crossing
branches” in a constituency tree.

Some dependency grammars assume projectivity,
and others do not. In an earlier paper [3] I showed
how to adapt dependency parsing to a language with
totally free word order. This of course entails aban-
doning projectivity.

• Word-at-a-time operation: The parser examines
words one at a time, attaching them to the tree as
they are encountered, rather than waiting for com-
plete phrases.

This excludes dependency parsers that are simple
notational variants of constituency parsers.



• Single left-right pass: Unless forced to backtrack
because of ambiguity, the parser makes a single left-
to-right pass through the input string. This is a
vague requirement until the other requirements are
spelled out more fully, but it excludes parsers that
look ahead an indefinite distance, find a head, and
back up to find its predependents (compare [14]).

• Eagerness: The parser establishes each link as
early in its left-right pass as possible. Abney ar-
gues convincingly that eagerness is a property of
the parsers in our heads [1].

3.2 Simplifying assumptions.

For this initial investigation I will make four more as-
sumptions that will definitely need to be relaxed when
parsing natural language with actual grammars.

• Instant grammar: I assume that the grammar
can tell the parser, in constant time, whether any
given pair of words can be linked, and if so, which
is the head and which is the dependent. (In a real
grammar, some links could be harder to work out
than others.)

• No ambiguity: I assume that there is neither lo-
cal nor global ambiguity in any parse tree; that is,
every link put in place by the parser is part of the
ultimately correct parse.

This is clearly false for natural language, but by
assuming it, I can postpone consideration of how to
manage ambiguity. Psychological evidence indicates
that the parsers in our heads encounter relatively
little local ambiguity, and that they backtrack when
necessary [1].

• No inaudibilia: The grammar does not postulate
any inaudible elements such as null determiners, null
auxiliaries, or traces. (Bottom-up parsers cannot
respond to inaudibilia.)

• Atomicity: I assume that words are unanalyzable
elements and that there are no operations on fea-
tures or words’ internal structure.

Figures 5 and 6 show “test suites” of projective and
non-projective structures that parsers should handle.

4 The obvious parsing strategy.

Given these assumptions, one parsing strategy is obvi-
ous. I call it a strategy and not an algorithm because it
is not yet fully specified:

Figure 5: Some projective (non-crossing) structures that
any dependency parser should handle.

Figure 6: Some non-projective structures, allowed in
some languages and not in others.



Strategy 1 (Brute-force search) Examine each pair
of words in the entire sentence, linking them as head-to-
dependent or dependent-to-head if the grammar permits.

That is, for n words, try all n(n − 1) pairs. Note
that the number of pairs, and hence the parsing complex-
ity, is O(n2). If backtracking were permitted, it would
be O(n3), just like constituency parsing, because in the
theoretical worst case, the whole process might have to
be done afresh after accepting each word.

Implemented as a single left-to-right pass, the brute-
force search strategy is essentially this:

Strategy 2 (Exhaustive left-to-right search)
Accept words one by one starting at the beginning
of the sentence, and try linking each word as head or
dependent of every previous word.

This still leaves the order of comparisons unspeci-
fied. When looking for potential links to word n, do we
work backward, through words n − 1, n − 2, etc., down
to 1, or forward, from word 1 to word 2 up to n − 1?

Clearly, if the grammar enforces projectivity, or
even if projective structures are merely predominant,
then the head and dependents of any given word are
more likely to be near it than far away. Thus, they will
be found earlier by working backward than by working
forward.

Whether it is better to look for heads and then de-
pendents, or dependents and then heads, or both con-
currently, cannot yet be determined. Thus we have two
fully specified algorithms:

Algorithm ESH
(Exhaustive left-to-right search, heads first)
Given an n-word sentence:

[1] for i := 1 to n do
[2] begin
[3] for j := i − 1 down to 1 do
[4] begin
[5] If the grammar permits,

link word j as head of word i;
[6] If the grammar permits,

link word j as dependent of word i
[7] end
[8] end

Algorithm ESD
(Exhaustive left-to-right search, dependents
first)
Same, but with steps [5] and [6] swapped.

Note that although these algorithms are expressed
in terms of arrays indexed by i and j, they can also be
implemented with linked lists or in some other way.

5 Refining the algorithms.

Those näıve algorithms are obviously inefficient. A bet-
ter dependency parsing algorithm should not even try
links that would violate unity, uniqueness, or (when re-
quired by the language) projectivity.

Because the parser operates one word at a time,
unity can only be checked at the end of the whole pro-
cess: did it produce a tree with a single root that com-
prises all of the words? Uniqueness and projectivity,
however, can and should be built into the parsing algo-
rithm. Here is how to handle uniqueness:

Strategy 3 (Enforcing uniqueness)

• Principle: When a word has a head, it cannot have
another one.

• Implementation:

– When looking for dependents of the current
word, do not consider words that are already
dependents of something else.

– When looking for the head of the current word,
stop after finding one head; there will not be
another.

This leads immediately to:

Algorithm ESHU
(Exhaustive search, heads first, with
uniqueness)
Given an n-word sentence:

[1] for i := 1 to n do
[2] begin
[3] for j := i − 1 down to 1 do
[4] begin
[5] If no word has been

linked as head of word i, then
[6] if the grammar permits,

link word j as head of word i;
[7] If word j is not a dependent

of some other word, then
[8] if the grammar permits,

link word j as dependent of word i
[9] end
[10] end

Algorithm ESDU
(Exhaustive search, dependents first, with
uniqueness)
Same, but with [5–6] and [7–8] swapped.

Here the advantages of a list-based representation
begin to become apparent. Rather than work through
an array and perform tests to determine which elements



to skip, it is simpler to work through lists from which
the ineligible elements have already been removed.

Here is an algorithm that works with two lists,
Wordlist and Headlist, containing, respectively, all the
words encountered so far and all the words that lack
heads. Both lists are built by adding elements at the be-
ginning, so they contain words in the opposite of the or-
der in which they were encountered. As a result, search-
ing each list from the beginning retrieves the most recent
words first.

Algorithm LSU
(List-based search with uniqueness)
Given a list of words to be parsed,

and two working lists Headlist and Wordlist:

(Initialize)
Headlist := []; (Words that do not yet have heads)
Wordlist := []; (All words encountered so far)

repeat

(Accept a word and add it to Wordlist)
W := the next word to be parsed;
Wordlist := W + Wordlist;

(Dependents of W can only be in Headlist)
for D := each element of Headlist,

starting with the first

begin
if D can depend on W then

begin
link D as dependent of W ;
delete D from Headlist

end
end;

(Look for the head of W ; there can only be one)
for H := each element of Wordlist,

starting with the first

if W can depend on H then
begin

link W as dependent of H ;
terminate this for loop

end;
if no head for W was found then

Headlist := W + Headlist;

until all words have been parsed.

This time dependents are sought before seeking
heads. The reason is that W , the current word, is it-
self added to Headlist if it has no head, and a step is
saved by not doing this until the search of Headlist for
potential dependents of W is complete. This is essen-
tially the algorithm of my earlier paper [3].

6 Projectivity.

6.1 Definition.

Projectivity is informally defined as “no crossing
branches.” More formally:

• A tree is projective if and only if every word in it
comprises a continuous substring.

• A word comprises a continuous substring if and only
if, given any two words that it comprises, it also
comprises all the words between them.

The second clause of this is simply the definition of “con-
tinuous” – a continuous substring is one such that every-
thing between any of its elements is also part of it.

6.2 Building projectivity into the parser.

Now how does all of this apply to parsing? To build pro-
jectivity into a bottom-up dependency parser, we need
to constrain it as follows:

(a) Do not skip a potential predependent of W . That
is, either attach every consecutive preceding word
that is still independent, or stop searching.

(b) When searching for the head of W , consider only
the previous word, its head, that word’s head, and
so on to the root of the tree.

Constraint (b) is easy to understand. It says that
if the head of W (call it H) precedes W , it must also
comprise the word immediately preceding W ; thus it is
reachable by climbing the tree from that word. This
follows from the definition of projectivity: the substring
H . . .W must be continuous.

Constraint (a) says that the predependents of W
are a continuous string of the words that are still inde-
pendent at the time W is encountered.

Consider the words that, at any stage, still do not
have heads, i.e., the contents of Headlist in the list-based
parsing algorithm. Each such word is the head of a con-
stituent, i.e., a continuous substring. That is, each still-
independent word stands for the string of words that it
comprises. The goal of the parser is to assemble zero or
more of these strings into a continuous string that ends
with W . Clearly, if any element is skipped, the resulting
string cannot be continuous. q.e.d.

Here is the list-based parsing algorithm with pro-
jectivity added. This algorithm was mentioned briefly
in [3].

Algorithm LSUP
(List-based search with uniqueness and
projectivity)



Given a list of words to be parsed,
and two working lists Headlist and Wordlist:

(Initialize)
Headlist := []; (Words that do not yet have heads)
Wordlist := []; (All words encountered so far)

repeat

(Accept a word and add it to Wordlist)
W := the next word to be parsed;
Wordlist := W + Wordlist;

(Look for dependents of W ; they can only be
consecutive elements of Headlist
starting with the most recently added)

for D := each element of Headlist,
starting with the first

begin
if D can depend on W then

begin
link D as dependent of W ;
delete D from Headlist

end
else

terminate this for loop
end;

(Look for the head of W ; it must
comprise the word preceding W )

H := the word immediately preceding W
in the input string ;

loop
if W can depend on H then

begin
link W as dependent of H ;
terminate the loop

end;
if H is independent then terminate the loop;
H := the head of H

end loop;
if no head for W was found then

Headlist := W + Headlist;

until all words have been parsed.

7 Complexity.

We saw already that the complexity of the initial, brute-
force search algorithm, with a completely deterministic
grammar, is O(n2) because the search involves n(n − 1)
pairs of words, and n(n−1) approaches n2 as n becomes
large.

So far I have not introduced any mechanism for
handling local ambiguity. The obvious way to do so
is to backtrack – that is, return to the most recent
untried alternative whenever an alernative is needed. If

Figure 7: An instance of worst-case parsing complexity:
after accepting each word, the parser has to rework the
entire structure.

the parser is implemented in Prolog, backtracking is pro-
vided automatically.

The complexity of brute-force-search parsing with
backtracking is O(n3) because, after each of the n words
is accepted, the whole O(n) process may have to be done
over from the beginning. O(n3) is also the complexity of
recursive-descent constituency parsing.

These complexity results are not affected by con-
straints to enforce unity and projectivity, since there are
cases in which these constraints do not shorten the pars-
ing process. Consider for example the local ambiguity in
the phrase the green house paint. Not only is the green
a valid phrase (as in “you forgot the green,” said to a
painter), but so are the green house and the green house
paint. Thus, the parser must backtrack on accepting
each successive word (Fig. 7).

At this point I am still assuming atomicity. Barton,
Berwick and Ristad [2] prove that when lexical ambigu-
ity and agreement features are present — that is, when
words can be ambiguous and can be labeled with at-
tributes — natural language parsing is NP-complete.

Bear in mind that these are worst-case results. An



important principle of linguistics seems to be that the
worst case does not occur, i.e., people do not ac-
tually utter sentences that put any reasonable parsing
algorithm into a worst-case situation. Human language
does not use unconstrained phrase-structure or depen-
dency grammar; it is constrained in ways that are still
being discovered.

References

[1] Abney, Steven P. (1989) A computational model
of human parsing. Journal of Psycholinguistic Re-
search 18:129–144.

[2] Barton, G. Edward, Jr.; Berwick, Robert C.; and
Ristad, Eric Sven (1987) Computational Complex-
ity and Natural Language. Cambridge, Mass.: MIT
Press.

[3] Covington, Michael A. (1990) Parsing discontinuous
constituents with dependency grammar. Computa-
tional Linguistics 16:234–236.

[4] Fraser, Norman M. (1993) Dependency Parsing.
Thesis, Ph.D., University of London.

[5] Fraser, N[orman] M. (1994) Dependency grammar.
In The Encyclopedia of Language and Linguistics,
ed. R. E. Asher, vol. 2, 860–864.

[6] Gaifman, Haim (1965) Dependency systems and
phrase-structure systems. Information and Control
8:304–307.

[7] Hays, David G. (1964) Dependency theory: a for-
malism and some observations. Language 40:511–
525.

[8] Hays, David G. (1966) Parsing. In David G. Hays,
ed., Readings in Automatic Language Processing.
New York: American Elsevier.

[9] Hays, D[avid] G., and Ziehe, T. W. (1960) Stud-
ies in Machine Translation – 10: Russian Sentence-
Structure Determination. Research Memorandum
RM-2538, The RAND Corporation, Santa Monica,
California.

[10] Hudson, Richard A. (1991) English Word Grammar.
Oxford: Blackwell, 1991.

[11] Jackendoff, Ray (1977) X Syntax. Cambridge,
Mass.: MIT Press.

[12] Mates, Benson (1961) Stoic Logic. Berkeley: Uni-
versity of California Press.

[13] Sgall, Peter (1994) Dependency-based formal de-
scription of language. In The Encyclopedia of Lan-
guage and Linguistics, ed. R. E. Asher, vol. 2, 867–
872. Oxford: Pergamon Press.

[14] van Noord, Gertjan (1997) An efficient implementa-
tion of the head-corner parser. Computational Lin-
guistics 23:425–456.


