A Free-Word-Order Dependency Parser in
Prolog

Michael A. Covington
Artificial Intelligence Center
The University of Georgia
www.ai.uga.edu/mc

(© 2003
This copy printed March 12, 2003

1 Introduction

This paper presents an implementation of the parsing algorithm of Covington (1990a) in plain
Prolog, without using GULP (Covington 1994a,b) or other specialized software. It parses a
very small subset of Latin and accepts totally free word order. For ease of understanding
by students, the implementation is kept as simple as possible, with no attempt to obtain
maximum efficiency. The only “advanced” Prolog technique used here is a manipulation of
open lists that is fully described in Section 6.

2 The basic algorithm

A dependency tree is a directed acyclic graph in which all the words in a sentence are
connected together by grammatical relations. For example, the subject and object depend
on the main verb; adjectives depend on the nouns that they modify; and so on. In each pair
of connected words, one is called the dependent and the other is called the head.

This parsing algorithm accepts words one by one, and maintains two lists: WordList,
which contains all the words seen so far (in reverse order, most recent first), and HeadList,
which contains all the words that are not (yet) known to be dependents of other words.
Whenever a word W is received from the input list, the parser does the following things:

1. Looks W up in the lexicon and creates a node for it (a process that I will describe in
more detail shortly).

2. Looks through HeadList for words that can be dependents of W; attaches them as
such, removing them from HeadList. (There may not be any.)

3. Looks through WordList for a word of which W can be a dependent. (There will be at
most one.) If such a word is found, attaches W as that word’s dependent. Otherwise,
adds W to HeadList.

4. Adds W to WordList.

Note that steps 2 and 3 can both occur. That is, the current word can acquire dependents
in step 2, and then also acquire a head in step 3.

When the process is complete, and all the words in the input list have been processed,
HeadList should have only one element, the main verb.

3 The lexicon

In the sample parser, lexical entries are of the form

word(Form, [Category, Gloss, Gender, Number, Case, Person]).
where:

Form is the word as it actually occurs in the input.

Category is the syntactic category (n, v, or adj).

Gloss is a label that will identify the word in the output. In the examples, I use an English
translation of the word, with extra quotation marks.

Gender, Number, Case, Person are grammatical features.

In a more sophisticated implementation, the second argument of word might be a GULP
feature structure, and the grammar would have a morphological component rather than
listing all the inflected forms separately. Here is the lexicon actually used in the example
parser:

word(canis, [n,’’’dog’’’ ,masc,sg,nom,3]).
word(canem, [n,’’’dog’’’ ,masc,sg,acc,3]).
word(canes, [n,’’’dog’’’ ,masc,pl,nom,3]).
word(canes, [n,’’’dog’’’ ,masc,pl,acc,3]).
word(felis, [n,’’’cat’’’,masc,sg,nom,3]).
word(felem, [n,’’’cat’’’,masc,sg,acc,3]).
word(feles, [n,’’’cat’’’,masc,pl,nom,3]).
word(feles, [n,’’’cat’’’,masc,pl,acc,3]).
word(video, [v,”?’(I) see’’’, _,sg,_,11).
word (videmus, [v,’’’(we) see’’’,_,pl,_,1]).
word(videt, [v,’?’sees’’’, _,sg,_,31).
word(vident, [v,’’’see’’’, _,p1,_,3D).

word(parvus, [adj,’’’small’’’,masc,sg,nom,_]).

word(parvum, [adj,’’’small’’’,masc,sg,acc,_]).
word (parvi, [adj,’’’small’’’ ,masc,pl,nom,_]).
word(parvos, [adj,’’’small’’’,masc,pl,acc,_]).

Note that all categories have the same list of grammatical features, even though gender and
case are irrelevant for verbs, and person is trivial for nouns (all nouns are third person) and
irrelevant for adjectives.

4 The grammar

The grammar consists of rules that specify what dependents can be connected to what heads.
These are of the form

dh(Dependent, Head).
where Dependent and Head are feature lists like those in the lexicon. For example:

e Subject and verb: A noun can depend on a verb provided they agree in number and
person, and the noun is nominative case. Other features do not matter.

dh([n,_,_,Number,nom,Person], [v,_,_,Number,_,Person]).

e Object and verb: A noun can depend on a verb provided the noun is accusative case.
Other features do not matter.

dh([n,_,_,_,acc,_], [v,_,_,_,_,_1).

e Adjective and noun: An adjective can depend on a noun provided they agree in gender,
number, and case.

dh([adj,_,Gender ,Number,Case,_], [n,_,Gender,Number,Case,_]).

These are the only grammar rules in the sample parser. Others can be added.

5 Representing nodes in the tree

The job of the parser is to construct a dependency parse tree. This is done by maintaining
lists of nodes, where each node is like the feature list used in lexical entries, with two more
elements added at the beginning. The structure of a node is:

[Count, Dependents, Category, Gloss, Gender, Number, Case, Person]

The underlined part is familiar.

Count is a unique number that indicates the word’s position in the input string. It makes
the original word order visible in the tree, and it also keeps successive occurrences of the
same word from being equated with each other.

Dependents is an open list containing nodes that depend on the current one. At the end
of the parsing process, HeadList will contain only one node, and its list of dependents will
contain, directly or indirectly, everything else.

Thus the parse tree is a recursive data structure in which any node can contain more
nodes.

6 Motivation and use of open lists

Recall that we are working with two lists of nodes, HeadList and WordList. The parser
will find nodes by looking in either list, and make changes to them (by adding dependents
to their dependent-lists).

Crucially, when a node is changed, we want the change to show up in both HeadList and
WordList. We do not want two separate and potentially different copies of each node. We
want each node to exist only once, even though it is accessible through both lists.

The most straightforward way to achieve this is to build the structure by instantiating
variables. Recall that all instances of a Prolog variable have the same value, even when the
variable occurs in more than one place (such as HeadList and WordList).

Accordingly, the list of dependents in each node will be an open list. The list will grow
by gradually instantiating parts of it that were formerly uninstantiated.

An open list is a list whose tail is uninstantiated. Consider the list:

[a,b,clX]

Now instantiate:

X = [dlY]

Now the original list has become:
[a,b,c,d|Y]

and if the variable X had been accessible in more than one place in the program (e.g., in
both HeadList and WordList), the change would have happened in both places, because
all instances of X are actually pointers to the same memory location. This is how we will
build dependent lists. In particular, to add an item to the end of an open list, we use the
predicate:

% add_item(70penList,+Item)
% adds Item just before the tail of OpenList

add_item(X,Item) :- var(X), !, X = [Item]|_].
add_item([_|X],Item) :- add_item(X,Item).

4

This predicate has no “output” — it works on OpenList by instantiating more of it, not by
changing it into something else.

Note that we are using open lists, not difference lists. A difference list is a structure
consisting of an open list plus a copy of its uninstantiated tail. If we were using difference lists,
add_item would need separate “input” and “output” arguments (because the uninstantiated
tail becomes a different variable), and that’s what we’re trying to avoid. The disadvantage of
this tactic is that, unlike difference lists, open lists do not give us a way to jump directly to
the place where an element will be added; we have to work down the list from the beginning
each time, like a conventional list.

Finally, note that the empty open list is _ (an uninstantiated variable), not [].

7 The parser itself

7.1 parse(+InputList,-Result)

To start parsing a list of words, the parser must initialize the node count as 1 and HeadList
and WordList as [], then pass control to the main loop:

parse(InputList,Result) :-
parse_loop(1l,Inputlist, [], [],Result).
7.2 parse_loop(+Count,+InputList,+WordList,+HeadList,-Result)

The predicate parse_loop steps through the input list, word by word. For each word, it
creates a node, then tries to connect the node to other nodes that already exist. When it
runs out of words, it returns HeadList as the result:

parse_loop(Count, [Word|InputList] ,WordList,HeadList,Result) :-

word (Word,WordFeatures), % Look up the next word
Node = [Count, _ | WordFeatures], % Build a node for it
parse_node (Node,WordList ,HeadList,NewHeadList), % Try to attach it
NewCount is Count + 1, % Increment the counter
NewWordList = [Nodel|WordList], % Add Node to WordList

parse_loop(NewCount, InputList,NewWordList ,NewHeadList,Result).

parse_loop(_, [],_,Result,Result). % Nothing more to do, so Result = HeadlList

7.3 parse_node(+Node,+WordList,+HeadList,-NewHeadList)

This is the predicate that takes a newly created node and tries to connect it to other nodes.
In so doing, it can alter HeadList by adding or removing elements, hence the need for an
output argument, NewHeadList.

parse_node(Node, [1, [1, [Node]) :- !.
% If this is the first word, just add it to HeadList.

parse_node (Node,WordList,HeadList,NewHeadList) :-
try_inserting_as_head(Node,HeadList,HeadList2),
try_inserting_as_dependent (Node,WordList,HeadList2,NewHeadList) .

7.4 try_inserting as_head(+Node,+HeadList,-HeadList2)

This predicate tries to attach Node as a head above one of the words presently in HeadList.
To do this, it must look at all the elements of HeadList, because any and all of them could
be dependents of Node. For instance, a noun might be preceded by several adjectives that
modify it.

There are three clauses. First, and most obviously, when you get to the end of HeadList,
stop:

try_inserting_as_head(_, [],[]).
% No more elements of HeadList to look at.

Second, and more commonly, look at the grammatical features of Node and of Head (an
element of HeadList). See if Head can be a dependent of Node. If so, add Head to Node’s
open list of dependents by instantiating part of the tail (using add_item). Then recursively
look for more dependents, using a version of HeadList from which Head has been removed.

try_inserting_as_head(Node, [Head |HeadList] ,NewHeadList) :-
% Insert Node above Head, and remove Head from HeadList.
Node [_,DINodeFeatures],
Head [_,_|HeadFeatures],
dh(HeadFeatures,NodeFeatures), % Head is the dependent here
add_item(D,Head),
% Now recurse down HeadList and see if it can be done again.
% (Multiple elements of HeadList may be dependents of Node.)
try_inserting_as_head(Node,HeadlList,NewHeadList) .

That’s not the only option. The alternative is that either the dependency connection couldn’t
be made, or the parser chose not to do it (because it’s a nondeterministic parser). In that
case we skip Head and recurse, preserving Head in the version of HeadList that will be
passed along to the next step in the parser.

try_inserting_as_head(Node, [Head|HeadList], [Head|NewHeadList]) :-
% Couldn’t use Head, so skip it.
try_inserting_as_head(Node,HeadList,NewHeadList) .

7.5 try_inserting_as_dependent(+Node,+WordList,+HeadList2,-NewHeadList)

A node can have many dependents but only one head. Its dependents have to be found in
HeadList (which is what we just did), but its head can be anywhere, so we need to search
for it in WordList.

Accordingly, this predicate requires WordList as well as HeadList2 as arguments. (HeadList?2
is HeadList as output by the previous predicate.)

6

There are only two clauses. Recall that ?- member (X, [a,b,c]) returns, as backtracking
alternatives, all the elements of the list, with X instantiated to a different one each time.
In the same way, ?- member (Word,WordList) instantiates Word to a member of WordList
and, upon backtracking, a different member, until it runs out of alternatives. Accordingly,
here is how we search for the head of Node:

try_inserting_as_dependent (Node,WordList,HeadList,HeadList) :-
member (Word,WordList),
Word = [_,D|WordFeatures],
Node = [_,_|NodeFeatures],
dh(NodeFeatures,WordFeatures), % Check that dependency is permitted
add_item(D,Node) . % Place Node into dependent list of Word

Here D is the open list of dependents of Word, and add_item instantiates it further to include
Node.

There is of course an alternative. If the grammar does not permit the link to be estab-
lished, or if the parser chooses not to establish it, the second clause is used instead:

try_inserting_as_dependent (Node, _,HeadList, [Node|HeadList]) .

This just adds Node to HeadList.

8 Output utilities

An open list of nodes is hard to print out readably. Accordingly, the program also contains
predicates write_list, write_dep (for lists of dependents), and try to actually manage the
parsing process, then print out the dependency tree as an indented structure. You can query
a sentence and get all its parses like this:

try([canis,parvum,videt,felem]).
canis parvum videt felem

3 v ’sees’ _ sg _ 3
1 n ’dog’ masc sg nom 3
4 n ’cat’ masc sg acc 3
2 adj ’small’ masc sg acc _

No (more) parses.

That is: ‘sees’ is the head word, and it has two dependents, ‘dog’ and ‘cat’. In turn, ‘cat’ has
another dependent, ‘small’. If a sentence is ambiguous, multiple parse trees are returned.

9 Limitations

This parser is far from adequate for actual parsing of Latin.

e It treats word order as totally free. There are no limits on word order at all (for
instance, a preposition could come after its object, or be separated from its object by
any distance — things that do not actually happen in Latin).

o [t treats all dependents as optional. There is no way to specify that a verb must have
an object, or that it must have only one object.

These limitations can be overcome partly by enriching the grammar with feature structures,
and partly by adding projectivity constraints to the parsing algorithm (Covington 2001).

References

Covington, Michael A. (1990a) Parsing discontinuous constituents in dependency
grammar. Computational Linguistics 16:234-236.

Covington, Michael A. (1990b) A Dependency Parser for Variable-Word-Order Languages.
Research Report AI-1990-01, Artificial Intelligence Center, The University of Georgia.
Available online at http://www.ai.uga.edu/ftplib/ai-reports/ail99001.ps.

Covington, Michael A. (1994a) GULP 3.1: An Extension of Prolog for Unification-Based
Grammar. Research Report AI-1994-06, Artificial Intelligence Center, The University of
Georgia. Available online at http://www.ai.uga.edu/ftplib/ai-reports/ail99406.ps.

Covington, Michael A. (1994b) Natural Language Processing for Prolog Programmers.
Englewood Cliffs, N.J.: Prentice-Hall.

Covington, Michael A. (2001) A fundamental algorithm for dependency parsing.
Proceedings of the 39th Annual ACM Southeast Conference, ed. John A. Miller and
Jeffrey W. Smith, pp. 95-102.

