
Logical Control of an Elevator with

Defeasible Logic

Michael A. Covington

Senior Member, IEEE

Artificial Intelligence Center

The University of Georgia

Athens, GA 30602-7415 U.S.A.

(E-mail mc@uga.edu; fax 706 542-8864)1

1999 February 16

1The author would like to thank Donald Nute and David Billington for assis-

tance and encouragement.

Abstract

The elevator control program described in this journal by Dyck and Caines [2]

can be implemented more concisely in d-Prolog, a defeasible logic program-

ming system developed by Nute [3, 4, 5]. In defeasible logic, more specific

rules take precedence over more general ones. Thus, the d-Prolog program-

mer can state general rules and then give explicit exceptions, just as humans

do when explaining complex regularities to each other.

Keywords: logic modeling, defeasible logic, defaults, elevator

1 Introduction

Human beings find it natural to explain complex situations by stating general

rules followed by exceptions, each of which overrides the rules that it appears

to contradict. For example, birds fly, but ostriches are birds, and ostriches

don’t fly. In classical logic, these three statements lead to a contradiction

because as soon as you encounter an ostrich, you infer both that it flies and

that it does not fly. In defeasible logic, however, the rule about ostriches

overrides the rule about birds because it is more specific.

There are two reasons why humans use defeasible logic. First, human

knowledge is imperfect. Classical logic specifies how to reason when all ap-

plicable facts are known with complete certainty. Defeasible reasoning is for

reasoning when relevant facts may be unknown or uncertain — the usual

human situation. Defeasible logic is logic that can change its mind, i.e., logic

in which new information can override earlier conclusions [3, 4, 5].

Second, defeasible knowledge representations are often more concise. In

classical logic, every rule must enumerate everything that could possibly

affect its conclusion. Defeasible logic can say, “unless a more specific rule

applies.” As just noted, in defeasible logic you can say “Birds fly,” and then

add, “Ostriches are birds that don’t fly,” without creating a contradiction.

Crucially, you don’t have to go back and change the first rule to “Birds fly

unless they are ostriches.”

Like humans, automatic control systems often deal with situations that

are conveniently described in terms of general rules with specific exceptions.

The d-Prolog theorem prover [4] implements defeasible logic as a computer

programming language; it is an extension of Prolog [5] and the full power of

1

Prolog is available. d-Prolog programs can be compiled into lookup tables

for execution on low-end microcontrollers [1].

2 The elevator problem

Dyck and Caines [2] give a set of logical axioms for controlling an elevator.

They assume that a separate routine, outside the theorem prover, maintains

a queue of requests, each of which has a steadily increasing “frustration level”

(age). Whenever the elevator reaches a floor at which it has been requested

to stop, the doors open and the request is removed from the queue.

The job of the theorem prover is to deduce whether the elevator should

stand still, move up, or move down, according to the following rules:

(1) By default, stand still.

(2) But if there are any requests in the queue, service the oldest request.

(3) But if there is a request for floor 4, service it immediately because floor

4 is the emergency entrance of a hospital.1

(4) But if there is a fire, stand still (at a floor, with the doors open, of

course).

In Dyck and Caines’ implementation, rule (2) splits into four cases: the

oldest request could come from inside or outside the elevator, and it could

refer to a floor above or below the current one. Without changing the logical

1One might want to suppress stops at intermediate floors in this case, but neither their

algorithm nor mine does so.

2

nature of the problem, I make two simplifications. My elevator simply takes

requests to stop at particular floors, without caring whether they come from

the control panel inside the elevator or the call buttons outside, and my

theorem prover deduces what floor the elevator should move toward, leaving

it to a separate routine to decide whether this entails going up or down.

3 Defeasibility

The defeasible structure of this set of rules is evident; each rule is an excep-

tion to those that precede it. Dyck and Caines, using classical logic, cannot

express this defeasibility directly. Instead, each of their control axioms spec-

ifies the conditions under which it does not apply, as well as those under

which it does. As a result, many conditions are stated in more than one

place. Schematically, their renderings of the four rules look like this:

(1) ¬Fire ∧ ¬Emergency ∧Pf(Max) = 0→ U = 0.

(2) ¬Fire ∧ ¬Emergency ∧ ¬Pf(Max) = 0 ∧Pl(Max) < Pn→ U = 1

(and three other cases).

(3) A series of axioms dealing with the special status of floor 4.

(4) Fire→ U = 0.

Separate axioms identify the oldest request (Max).

For the full set of axioms and an explanation of the notation, see [2];

the important thing here is that ¬Fire and ¬Emergency are necessary in

all rules that do not pertain to fires or hospital emergencies. Also, rule (2)

3

restates all the conditions of rule (1), negating the one that is not already

negated.

Using d-Prolog, and inferring the destination rather than the direction of

travel, the rules are encoded much more simply:

(1) stop := true.

(2) move(X) := oldest_request(X).

(3) move(4) := requested(4,_), oldest_request(_).

(4) stop :- fire.

Here ‘:=’ means ‘if, defeasibly,’ and ‘:-’ means ‘if, absolutely.’ Translated

into English, these rules say:

(1) By default, stop (stand still).

(2) But if oldest_request(X) is true for some X (i.e., there are requests

in the queue), move toward floor X.

(3) But if requested(4,_) is true, move toward floor 4, regardless of the

status of oldest_request. (Here ‘_’ means ‘ignore this argument’ —

the age of the request for floor 4 and the floor of the oldest request.)

(4) Regardless, if fire is true, stop.

If it is necessary to deduce the direction of travel, one can add two more

axioms in plain Prolog:

move_up :- move(D), current_floor(C), D>C.

move_down :- move(D), current_floor(C), D<C.

4

% Inputs to the logic engine

requested(3,1). % requested(Floor,AgeOfRequest)

requested(2,2).

requested(0,3).

neg fire. % is there a fire?

% Definition of "oldest request", in conventional Prolog:

oldest_request(Floor) :-

requested(Floor,Age),

\+ (requested(AnotherFloor,AnotherAge), AnotherAge > Age).

% Rules (in d-Prolog):

stop := true.

move(X) := oldest_request(X).

move(4) := requested(4,_), oldest_request(_).

stop :- fire.

pairwise_incompatible([stop,move(0),move(1),move(2),

move(3),move(4)]).

% Code to display the results:

demo :- @@ [stop,move(0),move(1),move(2),move(3),move(4)].

Figure 1: d-Prolog implementation of elevator control rules.

5

Figure 1 shows the complete program, which also contains the declaration

pairwise_incompatible([stop,move(0),

move(1),move(2),move(3),move(4)]).

to tell the theorem prover that stop, move(0), move(1), etc., are incom-

patible conclusions, i.e., any line of reasoning that implies that one of them

is true also implies that all of the others are false. Otherwise the theorem

prover would be unaware that the rules potentially conflict.

The theorem prover resolves conflicts as follows. Absolute (‘:-’) rules

always override defeasible (‘:=’) rules. Thus, whenever fire is true, the

theorem prover will infer stop and will not infer anything that conflicts with

stop.

When two defeasible rules conflict, the more specific one wins out. For

example, when oldest_request(2) is true, the premises of both rule (1) and

rule (2) are satisfied. Rule (2) wins out because its premise, oldest_request(X),

is more specific than the premise of rule (1), true. By “more specific” we

mean “true in a proper subset of the situations.” Thus, rule (2) wins out

because its premise takes more information into account.

Likewise, when, for example, oldest_request(2) and requested(4,1)

is true — that is, the oldest request is for floor 2 but there is also a request

for floor 4 with an age of 1 — then rules (1), (2), and (3) are all satisfied,

but rule (3) wins out because it takes into account all the premises of rules

(1) and (2) plus another, more specific, premise of its own.

6

4 Another approach

Rule (3) should say, “If there is a request for floor 4, go there.” But if encoded

as

move(4) := requested(4,_).

it will not override rule (2) because the theorem prover will not recognize it

as more specific. That is why it was encoded as:

move(4) := requested(4,_), oldest_request(_).

specifically mentioning oldest_request. This encoding is not unnatural;

expressing it in English, we might say, “regardless of oldest_request.” It

does, however, trigger an unnecessary computation to find the oldest request.

One alternative is to add a premise to rule (2) instead of rule (3), thus:

(2) move(X) := oldest_request(X), neg requested(4,_).

(3) move(4) := requested(4,_).

Now rule (2) cannot be satisfied when there is a request for floor 4, and

the question of precedence does not arise. However, this encoding still lacks

elegance because the premise of rule (3) is still redundantly encoded in rule

(2).

A better alternative is to tell the inference engine explicitly which rule

should win out, thus:

move(X) := oldest_request(X).

7

move(4) := requested(4,_).

sup((move(4) := requested(4,_)),

(move(X) := oldest_request(X))).

The sup declaration states explicitly that rule 3 is superior to rule 2. As

d-Prolog is presently implemented, the sup declaration has to quote, entire,

the rules to which it applies, but a more concise notation could easily be

provided. Indeed, for programming embedded systems, one may want to

have a mode in which sequence determines superiority, i.e., all later rules are

superior to all the rules that precede them.

5 Implicit defeasibility of conventional com-

puter programming

If sequence determines superiority, a defeasible logic program resembles a

conventional series of nested if–then–else statements such as this:

if requested(4) then

move(4)

else if oldest request(X) then

move(X)

else

stop.

This is not classical logic because the conditions for the second if and the

final else are not locally explicit; a purely classical set of rules would be:

8

requested(4) → move(4)

(∃ X) oldest request(X) ∧ ¬ requested(4) → move(X)

¬[(∃ X) oldest request(X)] ∧ ¬ requested(4) → stop

where each rule explicitly mentions the conditions under which it could be

overridden. In conventional computer programming, as in defeasible logic,

the overriding of rules depends on context. The difference is that defeasible

logic can use the internal structure of the rules, not just the place where they

appear in the program, to determine which one has precedence.

References

[1] Michael A. Covington, “Defeasible Logic on an Embedded Microcon-

troller,” Proceedings, Tenth International Conference on Industrial

and Engineering Applications of Artificial Intelligence and Expert Sys-

tems (IEA-AIE), 1997.

[2] Derek N. Dyck and Peter E. Caines, “The logical control of an eleva-

tor,” IEEE Trans. Automat. Contr., vol. 40, pp. 480–486, 1995.

[3] Donald Nute Basic defeasible logic. In Intensional logics for program-

ming, ed. L. Fariñas del Cerro and M. Penttonen, pp. 125–154. Oxford:

Oxford University Press, 1992.

[4] Donald Nute. d-Prolog: an implementation of defeasible logic in Pro-

log. In Non-monotonic extensions of logic programming: theory, im-

plementation, and applications, ed. J. Dix, L. M. Pereira, and T.

9

Przymusinski, pp. 161–182. Research report 17/96, Institut für Infor-

matik, University of Koblenz-Landau, 1996.

[5] Donald Nute Defeasible Prolog. In M. Covington, D. Nute, and A.

Vellino, Prolog programming in depth, 2nd ed., pp. 345–405. Upper

Saddle River, N.J.: Prentice-Hall, 1997.

10

