
On Designing a Language for
Electronic Commerce

Michael A. Covington
Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602–7415 U.S.A.

To appear in International Journal of Electronic Commerce

Abstract

This paper surveys practical issues in the design of a formal language for
business communication (FLBC) in which transactions are put together by
combining meaningful elements, much as a programming language encodes
algorithms. Such a language is preferable to existing codes such as ANSI X12
and UN EDIFACT because of its much greater versatility. The new language
is tentatively named LEC (Language for Electronic Commerce).

1 The problem

1.1 Why a new language?

Electronic data interchange (EDI) is the automated exchange between com-
puters of the messages needed to carry out business transactions. Examples
include electronic funds transfers, purchase orders, invoices, and various kinds
of administrative information. EDI users range from corporations to armed
forces to museums and libraries.

Present-day EDI messages look like Figure 1, and I want to make them
look like Figure 2. The difference is more than cosmetic. Current EDI

1

ST*840*159

BQT*00*Q47391*820430

N1*SE*X, Inc.

N1*BY*Y Co.

P01*1*30000*EA*0.42*PN*747355*PD*Circuit Network

SCH*10000*EQ****002*820604

SCH*20000*EA****002*820709

CCT*1*30000

SE*9*159

Figure 1: Example of an EDI transaction in ANSI X12 format, requesting a
price quote on 30,000 circuit networks with specified delivery dates [20].

standards such as ANSI X12 [12] and UN EDIFACT [6] are essentially data
formats, consisting merely of data fields arranged on a predefined form. A
new type of form is needed for each type of message — so that in practice,
there are hundreds — and if a message doesn’t fit a predefined form, you
can’t express it at all. For example, Moore [30] found it impossible to use
EDI to tell a customer that, contrary to an earlier message, a shipment had
not actually gone out.

In this paper I want to sketch a new Language for Electronic Commerce
(tentatively named LEC) in which messages are built by combining mean-
ingful elements.1 Essentially, LEC will work like a programming language
except that instead of describing algorithms, it will describe business trans-
actions. Messages are not limited to predefined forms; instead, just as in
programming languages, the elements of the language can be put together in
any meaningful way.

1.2 From invention to design

Languages of the type that I envision have been prototyped by Moore [30],
Kimbrough and Lee [19], Dewitz and Lee [11], and probably others. The

1An earlier version of this paper was presented at the 1996 Hawaii International Con-
ference on System Sciences (HICSS). I am grateful to Roggie Boone, Steve Kimbrough,
Ron Lee, Scott Moore, and anonymous reviewers for suggestions and encouragement.

2

lec(
dialect(1.25,full),
from=”Y Co.”,
to=”X, Inc.”,
content:

we request:
you inform us:

price of:
item 1 := (part no:747355, description:”Circuit Network”),
action=

deliver(from=you, to=us, item=item 1, qty=20000, date≤82/06/04) &
deliver(from=you, to=us, item=item 1, qty=20000, date≤82/07/09)

)

Figure 2: What the new type of language may look like. Semantic and
pragmatic analysis is needed before this language can actually be designed
in workable form.

development of such a language was apparently first advocated by Ronald
Lee [23] and, independently, John McCarthy [28].

In this paper I want to move from the problem of inventing this new type
of language to the problem of designing a practical language of this type.
In so doing, I will draw upon applicable knowledge from natural language
semantics and pragmatics, programming language design, artificial intelli-
gence, and other fields. I will not be presenting a complete design, merely an
approach to a set of design problems. For brevity I will sometimes use the
name LEC to encompass not only the language I hope to design, but also
any other languages that share its relevant properties.2

LEC breaks with traditional business data processing technology in two
ways. Like programming languages, LEC uses recursively defined syntax
rather than flat data formats, thereby enabling a smaller language to do a
bigger job. More importantly, LEC assumes that messages will be processed
by inference, not just decoding [30, 4]. Whereas conventional EDI merely
copies a block of data from one computer into another, LEC encodes messages
that the receiving computer must figure out how to handle. In this respect

2The generic term, FLBC (formal language for business communication), is also the
name of a language designed by Moore [30].

3

LEC is much more like human language. When I talk to you, I am not copying
my thoughts into your mind; rather, I’m giving you a message that you can
decide to handle in any number of ways, depending on the context, whether
you trust me, and so forth. Likewise, LEC is designed for computers that
will decide, in various sophisticated ways, how to handle incoming messages,
rather than copying them blindly into internal databases.

The requisite technology for implementing inference, logic programming,
is now twenty years old, and adequate computer power is now available in
machines as small as 4×6 inches (10×15 cm).3 Accordingly, this aspect of
LEC will be an application of known artificial intelligence techniques. This
is not to say that all the research has been done; many important problems
remain unsolved. But the technology is now at the stage where an applicable
subset of it can be chosen and put to use.

1.3 How communication can fail

The central role of inference implies that LEC messages can fail in ways that
conventional EDI messages cannot. If your software is designed to handle a
particular conventional EDI form, you can be confident that it will always
succeed in doing so. The only reasons an incoming message might be un-
handleable are that it violates the syntax of the form, or else the data within it
is either erroneous or malformed. Valid messages without erroneous content
will always be handled correctly.

But with a language that requires inference, it is possible to receive a per-
fectly well-formed message containing a perfectly reasonable request which
you nonetheless cannot handle, not because you lack the ability to comply,
but because you can’t figure out what to do with it — the requisite infer-
ences are not within your computational ability, or you lack some background
knowledge that the sender assumed you had. This is a very familiar scenario
in human-to-human communication. How it will affect EDI remains to be
worked out. Obviously, one of the desiderata for an inferential message han-
dler is the ability to troubleshoot such situations automatically and reply
with appropriate requests for clarification. Another is that it should have
caution built into it, to minimize the risk of taking actions that turn out,

3A 4×6× 1
2 -inch 80486 PC was exhibited at the 1995 Embedded Systems Conference in

Atlanta. This is more than enough computer power for the purpose.

4

after more precise reasoning, to be uncalled-for.
Suspicions about this failure mode probably account for some of the skep-

ticism that is occasionally expressed about new-style EDI languages. But on
closer examination, this failure mode is not as pernicious as it sounds, be-
cause, in general, the messages that fail this way are messages that could
never even have been attempted with conventional EDI. At worst, you are
no worse off than with the old technology. Almost all of the time you are
better off.

There may also be technological solutions. One can imagine “distillers”
that simplify LEC messages the way Adobe’s PostScript distiller simplifies
graphics files. The analogy is not perfect because LEC messages refer to data
outside themselves, while PostScript graphics files do not. However, a LEC
distiller, running on a powerful computer, could turn a difficult-to-handle
query into an easy one by making its requirements more explicit.

1.4 Design process

To design LEC we need not only an adequate theory, but also an empirical
study of the communicative power needed for electronic commerce. Here we
can draw on recent developments in theoretical linguistics, especially formal
semantics and formal pragmatics. Linguists now use set-theoretic techniques
to specify, with mathematical precision, the relations between utterances,
their meanings, and the situations in which they are used. Naturally, not all
of human language has been analyzed this way, but we don’t need all of it;
we only need the subset that is essential for commercial transactions.

Some important work along these lines has already been done [30, 19, 11,
21, 31, 32]. In the remainder of this paper I shall sketch some applicable
concepts from linguistics and computer science and make concrete proposals
for the design of a new language.

2 Language and Communication

Figure 3 shows a model of how the parts of any language fit together:

• Semantics relates the message to the things it can talk about (its logic
and ontology);

5

Physical encoding
and transport

Syntax

@
@
@

�
�
�

Semantics Pragmatics

Logic
and ontology

Communicative
situation

Figure 3: A model of language and communication.

• Pragmatics relates the message to the communicative situation;

• Syntax specifies how the parts of the message fit together.

This model is an adaptation of the standard five-level model of human lan-
guage used by linguists [1, 9], with physical encoding and transport taking
the place of morphology and phonology. The three-way distinction between
syntax, semantics, and pragmatics goes back to a 1938 monograph by C. W.
Morris [34], but the pragmatics of human language is a new field of study,
dating from the 1970s.

6

3 Logic and ontology

Ontology is what you can talk about or think about, and logic is how you
describe and reason about the properties and relationships of things. The
design of LEC must reflect the ontology and logic of business transactions.

3.1 Entities and relationships

A striking characteristic of X12 and EDIFACT is their bloated ontology.
When the same entity or type of entity turns up in more than one place, the
sameness is not recognized. To take an extreme case, EDIFACT has no con-
cept of “number” — instead, there are 3–digit numeric fields in some places,
4-digit numeric fields in others, 10-digit numbers somewhere else, and so on.
The problem, of course, is that EDIFACT does not distinguish concepts from
their physical representations. In essence, EDIFACT is a language for de-
positing character strings into particular places on a remote computer, rather
than a language for exchanging knowledge. X12 is largely the same.

The ontology of LEC will be much leaner, but it would be premature to
try to enumerate everything it will contain. Minimally, LEC will have to refer
to numbers; quantities expressed in specific units; individual participants in
a transaction; mechandise; and relations such as ownership, possession, and
transportation. It is likely that the basic concepts of business transactions
will be arranged in an ‘is a’ hierarchy with default inheritance of properties.

3.2 Example: Ontology of quantities

Consider for example quantity, which is one of the concepts where careful
analysis of the ontology pays off.

Most business communications use numbers to express quantities. But a
quantity includes a unit (of a particular dimension), not just a number. Here
are some examples:

Expression Number Unit Dimension Thing measured
2 liters of gasoline 2 liter volume gasoline
5 pounds of sugar 5 pound weight sugar
$123.45 123.45 dollar currency money
1 dozen eggs 1 dozen cardinality egg
5 trucks 5 individual cardinality truck

7

The first two are straightforward. Note the usefulness of distinguishing
the unit (liter, pound) from its dimension (volume, weight). This paves the
way for making conversions or at least determining whether they are possible.
You can convert meters into fathoms if you know how, but you can never
convert meters into ounces.

What is not often noted is that money has the same property: it is a
commodity (money, the medium of exchange) whose quantity is measured
in units (dollars, pounds, dinars) of a particular dimension (currency). Un-
like meters versus feet, the conversion factor for dollars versus pounds is
constantly fluctuating, but it does exist.

Even simple quantities like “1 dozen” or even “5” fit this scheme; the trick
is to assign them an especially simple dimension (“cardinality,” the number
of elements in a set). Then “dozen” is a unit of cardinality, equal to 12
individuals.

Accordingly, LEC will use quantities, with a well-worked-out ontology,
where other EDI formats use simple numeric data. This will facilitate infer-
ence on the receiving end.

3.3 Logic: Defeasible reasoning

LEC will of course use something like classical first-order logic as the basis
of its reasoning system, but classical logic is not enough.

One obvious difference between practical knowledge and pure classical
logic is that practical knowledge can be overruled. You can get information
that says X and then, later on, get better information that says not-X. When
this happens, you don’t have a contradiction; you’ve merely expanded your
knowledge.

This is known as defeasible or non-monotonic reasoning. Defeasible in-
ference by computer is now a well established technology [17, 10] and will be
incorporated into the LEC inference engine. Defeasible reasoning in business
communications has been explored in depth by Kimbrough and Moore [20]
among others.

It is an open question whether defeasibility will need to be expressed in
the language (so that messages can say, “Normally, do this. . . ”) or merely
used in the inference mechanisms for handling messages.

8

3.4 Other extensions to classical logic

LEC and the computer systems that process it also need three familiar ex-
tensions to classical logic. First, in business you often have to talk and reason
about what is possible, not merely what is the case today. That is known as
modal logic.

Second, you have to reason about time, and about facts that are true at
different times, using temporal logic.

Third, you have to reason about obligations (both your own and other
people’s), using deontic logic. The application of deontic logic to com-
merce is already an active research area [20, 24]. Kimbrough and Moore [20]
point out that in real life, all obligations are defeasible; no matter what your
obligations seem to be, there is always the possibility of finding out that they
are really something else.

Again, computer inference techniques for these extensions to classical
logic are available [16, 26, 29, 35, 8]. Full implementations of modal, tempo-
ral, and deontic logic will not be needed because LEC is not aiming for the
full expressive power of human language, only a minimum level sufficient for
business transactions. Accordingly, external limitations can be imposed to
make automated reasoning more practical. Since so much research is being
done on these topics by others, I shall not pursue them here.

4 Semantics and vocabulary

The semantics of LEC will be based on first-order logic, with the extensions
already mentioned.

In the design of the vocabulary, granularity will be a major issue:
whether to break meanings down into the simplest possible elements, and if
so, how. For example, to sell is to trade for money; to trade is to make a
pair of transfers of possession in opposite directions each cancelling the debt
created by the other; and so on. The practical question is which concepts
should be treated as atomic, and which should be broken down further (cf.
[7]).

This is a recurrent issue in the design of programming languages, even
the simplest ones. Consider for example the percent key on your pocket cal-
culator. Taking a percentage is not an elementary mathematical operation,

9

but it comes up so often in business arithmetic that it needs a button of its
own. A calculator designed for theoretical elegance would not have a percent
key (nor, perhaps a square root key) and would not be as handy in practical
work.

Similarly, the vocabulary of LEC needs to provide for concise expression
of the concepts that come up regularly in commerce, whether or not they are
equivalent to combinations of things already provided for. On the other hand,
the language should be systematic enough that programmers can remember
how to use it and computer implementations are reasonably clean and simple.
The tension between theoretical elegance and practical usefuless will always
be felt.

5 Pragmatics

Pragmatics is the relation between a message and the situation in which it is
uttered. In LEC, pragmatics comprises speech acts, conversational maxims,
and a number of more mundane aspects of message handling.

5.1 Speech acts

Austin [3], Searle [38], and others have identified various illocutionary

acts that one can perform by uttering a message. One classification divides
illocutions into five major types, assertions, promises, instructions, decla-
rations (e.g., christening a ship, defining a new term), and expressions of
feeling.

Not all of these occur in commerce. Further, some relatively special-
ized illocutions, such as offers, are so common that they should probably be
treated as basic types. A basic set for electronic commerce might comprise
the following:

• Informing (giving information)

• Confirming information already given

• Inquiring (requesting information)

• Requesting or commanding action

10

• Promising (obligating oneself)

• Making an offer

• Accepting an offer

• Defining a new term

The first seven of these were prominent in Moore’s empirical study of EDI
speech acts [32]. The last one is a hook for extending the language. On the
application of speech act theory to commerce, see also [2]. Speech acts play
a prominent role in KQML (Knowledge and Query Manipulation Language)
[13, 14, 22, 27], to which I will return near the end of this paper.

Speech act theory is also the basis of the “Coordinator” software tool
developed by Flores et al. [15] to organize communication among individuals.
Flores and his colleagues argue convincingly that communicative acts are
the basis of cooperative human activity, and that information retrieval and
decision making are of secondary importance.

5.2 Conversational maxims

In a seminal paper, Grice [18] pointed out that in ordinary conversation,
people abide by a number of maxims such as “Be relevant,” “Be concise,”
and “Be truthful (not misleading).” To deduce what an utterance means, we
routinely presume that these maxims are being followed.

Grice’s maxims may be the key to an important part of the inferential
process for handling LEC messages. Fortunately, commerce is much less
subtle than natural language in general, and in commerce there is a strong
tendency to make messages explicit. One does not have to deal with insin-
uations, rhetorical understatements, metonymy, or other figures of speech.
The prominent inferential tasks have rather to do with associating the mes-
sage with its sender and the relevant background knowledge. The overriding
conversational maxim in commerce may well be something like, “Treat this
message like other messages of the same type unless there is a demonstrable
reason not to do so.”

Indirect speech acts, such as saying “Can you do X?” to mean “Please
do X,” can simply be forbidden in LEC. There can also be a convention that

11

nothing is ever interpreted nonliterally (as metaphor, irony, or insinuation);
messages always mean what they say.

At least I hope it will remain that simple. Kimbrough (personal com-
munication) has pointed out the possibility of an artifically intelligent EDI
system “learning” to exaggerate or lie in order to get results. The system on
the other end would then learn to discount its assertions. The process could
escalate until there was a complete failure of communication. (We see this
happen between humans.) We would want our inferential systems to detect
such situations and head them off somehow.

Another problem is that sometimes business relies on ambiguity. Some
contracts are deliberately inexplicit, not because of any lack of honesty, but
simply because no one could foresee how the details would work out, so the
parties agreed to leave things unsaid. A system for handling messages by
computer will require greater explicitness than human commerce does.

6 Syntax

6.1 Does syntax matter?

One could argue that the syntax of LEC is almost a moot point; any ad hoc
representation that has the right semantics and pragmatics will do. After
all, LEC is for computer-to-computer communication, and its readability or
elegance as judged by human eyes is unimportant.

That, however, is not true. Human beings have to implement the lan-
guage even if they will not be the ultimate senders or recipients of messages.
The history of programming languages shows that seemingly petty decisions
about syntax and physical encoding can have a large effect on the success or
failure of a language [39]. For example, the designers of ALGOL 60 failed to
specify the details of physical encoding, and as a result, ALGOL programs
were never portable [5]. Fortran and COBOL, with their well-specified phys-
ical representations, carried the day even though ALGOL was a more so-
phisticated language. Again, one of the factors that confined PL/I to IBM
hardware was its reliance on the EBCDIC character set. And the main rea-
son most of us have never used APL is its insistence on a character set all
its own.

On the other hand, the success of PostScript [36] as a computer-to-

12

computer language is attributable to many good design decisions, among
them free-form layout, the identification of the language in the first four
characters of every program, and the ability to mix MS-DOS and UNIX
end-of-line marks.

6.2 Prolog base

Following Moore [30] and others, I adopt Prolog as the basis for LEC. Prolog
is the only major computer language that is designed to represent inferential
knowledge as well as algorithms. Unlike conventional languages, Prolog has
a written representation for every value of every data type.4

The syntax of LEC will be a subset of that of ISO Prolog [37]. Prolog, in
turn, is based on C. Thus, familiar tokenization and parsing algorithms can be
used. Because Prolog can be used as its own metalanguage, implementation
of LEC in Prolog will be especially easy.5

For ease of language identification, each LEC message will be required to
begin with its principal functor (probably lec) with no comments or white
space preceding.

LEC messages will be text, written in the 128-character ASCII charac-
ter set. Conversion to or from other character sets is left to the transport
protocol.

Why not use a more concise binary encoding rather than text? For two
reasons. Text is readable and transportable; binary codes may not be. Sec-
ond, compression of data into concise binary form can be carried out by the
transport protocol. In any case, industry experience with another machine-
to-machine language — PostScript graphics — has shown that massive pro-
lixity is tolerable. PostScript files often start with many kilobytes of auxiliary
definitions that are never used. Whether LEC will be subjected to compara-
ble abuse remains to be seen.

4With a few arcane exceptions, of course, such as structures that are instantiated to
structures that contain them.

5More than one person has suggested that I use SGML or one of its derivatives, such
as HTML, instead of Prolog. This would not be advantageous. SGML is a language for
describing printed text, not exchanging knowledge, and it does not have the right syntactic
units to encode the ontology of LEC. (Instead of numbers, structures, and lists, everything
is just character strings.) Moreover, SGML is verbose; instead of msg(abc) one would have
to write <MSG> abc </MSG>. It would of course be trivial to translate Prolog-based LEC
into a semantically equivalent notational variant based on SGML.

13

Like Prolog, LEC will use free layout, and comments will be permit-
ted. Unlike PostScript, LEC will not fall into the trap of redefining some
comments to be significant elements as the language evolves. Instead, an
open-ended message element (perhaps called tag) will be provided for im-
plementing unforeseen extensions.

A standard printed representation for LEC messages will be devised so
that a message transmitted with minimal or nonstandard use of whitespace
can be printed automatically in readable form.

6.3 Some fine points

Prolog distinguishes between atomic symbols and character strings. Accord-
ingly, LEC will use Prolog atoms for meaningful words, and character strings
for free text and for names, addresses, and similar material that is merely
reproduced without being interpreted. Because double quoted strings are
byte strings, they can contain any type of data.

Many of the predicates used in commerce have multiple arguments, some
of which are optional or unknown. For example, the act of selling might
include a seller, a buyer, a thing sold, a price, and a date and time, but it
is common to leave some of these unspecified. Instead of standard Prolog
notations such as

sell(you,us,"Circuit Network",

(85,usdollars),_,_)

LEC will use structures with labeled arguments, such as

sell(from=you,

to=us,

item="Circuit network",

price=(87.5,usdollars),

date=...

)

or even discontinuous predicates as in:

you sell us "Circuit Network"

for (87.5,usdollars)

14

Here A sell B C for D is a template that matches the predicate-argument
structure.

To eliminate the unreadable pileup of parentheses that occurs at the end
of a formula such as

request(we,inform(you,us,whether(

possible(sell(you,us,...))))))

LEC will modify the Prolog operator table to use colons in a special way. A
colon will indicate that everything following it is a single argument, until the
end of the expression or a higher-level closing parenthesis is found. Thus,
instead of a(b(c(d))) one can write (a:b:c:d). This is analogous to the
logician’s use of periods (dots) in a formula such as

∃x. ∀y. p(x, y)⇒ q(x, y)

to show that the quantifier scope goes to the end of the expression.
Using these enhancements, the expression at the beginning of this section

can be written

we request:

you inform us whether:

possible:

you sell us ...

greatly improving readability as well as saving a few bytes.

7 Transport and Message Management

7.1 Basic requirements

By “transport” I mean the mechanism outside the language that is respon-
sible for getting messages from place to place. Transport includes communi-
cation protocols (SMTP, FTP, etc.), character set conversion, reformatting
to comply with line length limits, and the like.

There is some duplication of function between the transport layer and
the pragmatic information encoded in the message itself. For example, the
sender and the addressee are identified in both places. But this duplication

15

of function is not undesirable. First, deliberate discrepancies may be useful.
For example, a message may need to be addressed (internally) to any of
several different processes or functions at the same (transport-layer) email
address. Second, by checking for unexplainable discrepancies, one can detect
errors. The failures of the transport layer will not compromise the contents
of a message.

Transport need not be trivial and mechanical. Moore and Kimbrough
[33] point out the advantages of using a message management system

to automate message-handling tasks that would otherwise require human in-
tervention. LEC is an ideal language for such a system because each LEC
message can be understood, partly or by completely, by each message man-
agement system that it passes through.

7.2 Message identification

The syntax of LEC must provide for some transport-related matters. Each
message will be recognizable as LEC within the first few characters and will
specify what dialect or subset of LEC it is written in. This is important
for two reasons: as time goes on, various versions of LEC will exist, and
subset versions of LEC may be developed for less powerful machines (what
Kimbrough calls “toasters on the net”). There well may be LEC servers that
handle only a limited range of messages and simply ignore or reject messages
outside their scope. For example, a telephone directory information server
will not process offers to buy or sell.

Each message must specify who is addressing whom. The pronouns we
and you, referring to the sender and recipient respectively, will help make
messages concise.

Each message must also specify whether it is in reply to an earlier mes-
sage, and if so, which one. This is crucial for some types of communication
— accepting an offer, for instance — and helpful for other purposes, e.g.,
detecting endless loops.

7.3 Replies

The recipient of a message has to know whether a reply is needed. As the
framers of X12 note, an endless loop can result if a message requires a reply
and the reply also requires a reply. Accordingly, LEC must specify criteria

16

for inferring whether any particular message should be answered. Several
kinds of reply might occur:

• A confirmation that the message was received and will be handled;

• An informative message sent in response to a request;

• A response to the message itself, e.g., accepting an offer;

• “I do not understand,” identifying a part of the incoming message that
could not be decoded;

• “I can’t do that,” when the recipient cannot do what is requested;

• “You’ve delivered your message to the wrong person” (either a sub-
stantive error, or a conflict between the transport layer and the internal
routing information); or

• No response (if the message was a broadcast message, e.g., “anyone
who can do so-and-so, please answer,” and no response is wanted from
those who do not meet the criterion).

It is not yet clear whether the answer to a message must always be a complete
message (analogous to a complete sentence) or whether an answer could be
something less, such as just the name of an entity, provided the context is
clear.

7.4 LEC and KQML

KQML (Knowledge Query and Manipulation Language) is a Lisp-based lan-
guage that was developed as part of the ARPA Knowledge Sharing Effort
[13, 14, 22] and has been implemented by several different working groups.
KQML is based on speech acts — every message begins with an illocution
marker — and is designed to facilitate the use of automated agents to handle
messages.

At first sight KQML greatly resembles LEC, but the purpose of the two
languages is different. KQML addresses all of the transport issues just men-
tioned, but it does not encode the content of the transactions. Instead,
KQML messages are intended to serve as wrappers around messages ex-
pressed in some other language, such as Prolog or LEC.

17

8 What next?

8.1 Existing standards as a database

To actually design and implement LEC it will be necessary to work through a
corpus of actual business transactions, identifying the communicative power
needed and designing a language equal to the task. Fortunately, much of
the data-gathering has been done by the designers of existing EDI stan-
dards. EDIFACT and X12 are, after all, nothing but corpora of transaction
types. The real work now is to analyze the semantics and pragmatics of
the EDIFACT and X12 transactions, just as the inventors of Fortran and
COBOL studied existing assembly language computer programs.

8.2 Applications of LEC

The most obvious use for LEC is, of course, as a more versatile substitute
for X12, EDIFACT, and similar data languages. As such, it has the same
advantages, including the ability to automate routine commerce and the
ability to do business without having to know English or another major
world language (it’s no accident that EDIFACT is popular in Hungary and
Bulgaria).

Because of its versatility, LEC also lends itself to automatic translation
into and out of human languages. That is, it will be quite feasible to generate
English, French, or Hungarian translations of LEC messages [25]. Further,
because LEC is logic-based, it will be practical to go the other way, writ-
ing software that accepts human-language input (about routine commercial
matters, of course, not full unrestricted English) and converts it into LEC
messages. Like human language, and unlike X12 or EDIFACT, LEC mes-
sages are constructed by putting meaningful elements together. Thus, one
does not have to interpret the entire natural language input and then go
searching for a form that fits it; rather, one has only to map the meaningful
elements of one language onto those of another.

8.3 Criteria of success

LEC has two design goals: to substitute for traditional EDI formats, and to
deliver functionality that traditional EDI cannot. Testing of prototypes will

18

focus on these goals. Types of software that I envision building in order to
test LEC include:

• Translators to convert a subset of X12 into LEC;

• Translators to convert LEC into X12, as far as possible (a much harder
problem because LEC can say things that X12 cannot);

• “Distillers” to simplify and normalize LEC messages (analogous to
PostScript distillers that simplify graphics files);

• Automatic message handlers and transaction processors to accept and
respond to LEC messages;

• Translators to translate LEC messages into (approximations of) English
and other human languages.

Eventually, of course, LEC should be tested in a real or simulated business
situation analogous to the bicycle shop of Kimbrough and Moore [30].

References

[1] Allen, James. Natural language understanding. 2nd ed. Redwood City,
Calif.: Benjamin/Cummings, 1995.

[2] Auramäki, Esa; Lehtinen, Erkki; and Lyytinen, Lalle. A speech-act-
based office modeling approach. ACM Transactions on Office Infor-
mation Systems 6 (1988) 126–152.

[3] Austin, J. L. How to do things with words. Oxford: Clarendon Press,
1962.

[4] Bach, Kent, and Harnish, Robert M. Linguistic communication and
speech acts. Cambridge, Mass.: MIT Press, 1979.

[5] Bemer, R. W. A politico-social history of Algol. Mark I. Halpern et
al., eds., Annual review in automatic programming 5, 151–237. Oxford:
Pergamon, 1969.

19

[6] Berge, John. The EDIFACT standards. Manchester (England): NCC
Blackwell, 1991.

[7] Bolinger, Dwight. The atomization of meaning. Language 45 (1965)
555–573.

[8] Bons, R. W. H.; Lee, R. M.; Wagenaar, R. W.; and Wrigley, C. D.
Modeling interorganizational trade procedures using documentary Petri
nets. Report RP–1994–10–01, EURIDIS, Erasmus University, Rotter-
dam.

[9] Covington, Michael A. Natural language processing for Prolog program-
mers. Englewood Cliffs, N.J.: Prentice-Hall, 1994.

[10] Covington, Michael A.; Nute, Donald; and Vellino, André. Prolog pro-
gramming in depth. Upper Saddle River, N.J.: Prentice-Hall.

[11] Dewitz, Sandra K., and Lee, Ronald M. Legal procedures as formal con-
versations: contracting on a performative network. Proceedings, Tenth
International Conference on Information Systems (1989), 53–65.

[12] Electronic data interchange: X12 standards, draft version 3 release 4.
New York: American National Standards Institute, 1993.

[13] Finin, Tim; Weber, Jay; et al. Draft specification of the KQML agent-
communication language plus example agent policies and architectures.
1993. Manuscript obtained from http://www.cs.umbc.edu.

[14] Finin, Tim; Fritzson, Richard; McKay, Don; and McEntire, Robin.
KQML as an agent communication language. Proceedings of the Third
International Conference on Information and Knowledge Management
(CIKM ’94). Manuscript obtained from http://www.cs.umbc.edu.

[15] Flores, Fernando; Graves, Michael; Hartfield, Brad; and Winograd,
Terry. Computer systems and the design of organizational interaction.
ACM Transactions on Office Information Systems 6:153–172.

[16] Gabbay, Dov M.; Hogger, C. J.; and Robinson, J. A., eds. Handbook
of logic in artificial intelligence and logic programming. 3 vols. Oxford:
Oxford University Press, 1993-94.

20

[17] Ginsburg, Matthew L., ed. Readings in nonmonotonic reasoning. Los
Altos, Calif.: Kaufmann, 1987.

[18] Grice, H. Paul. Logic and conversation. Peter Cole and Jerry L. Mor-
gan, eds., Syntax and semantics, vol. 3: Speech acts, 41–58. New York:
Academic Press, 1975.

[19] Kimbrough, Steven O., and Lee, Ronald M. On illocutionary logic as a
telecommunications language. Proceedings, Seventh International Con-
ference on Information Systems (1986), 15–26.

[20] Kimbrough, Steven O., and Moore, Scott A. On obligation, time, and
defeasibility in systems for electronic commerce. Proceedings, Hawaii
International Conference on System Sciences (1993), vol. 3, 493–502.

[21] Kimbrough, Steven O., and Moore, Scott A. On automated message
processing in electronic commerce: speech act theory and expressive
power. Ms., University of Pennsylvania, 1994.

[22] Labrou, Yannis, and Finin, Tim. A semantics approach for KQML
— a general purpose communication language for software agents.
Manuscript obtained from http://www.cs.umbc.edu.

[23] Lee, Ronald M. Candid – a logical calculus for describing financial
contracts. Dissertation, University of Pennsylvania, 1980.

[24] Lee, Ronald M. Bureaucracies as deontic systems. ACM Transactions
on Office Information Systems 6 (1988) 87–108.

[25] Lee, R. M.; Dewitz, S. D.; and Chen, K. T. AI and global EDI. Pro-
ceedings, Hawaii International Conference on System Sciences (1991),
vol. 4, 182–191.

[26] Lewis, Lundy Michael. The ontology, syntax, and computability of de-
ontic logic. Dissertation, Ph.D., University of Georgia, 1986.

[27] Mayfield, James; Labrou, Yannis; and Finin, Tim. Evaluation of
KQML as an agent communication language. Manuscript obtained
from http://www.cs.umbc.edu.

21

[28] McCarthy, John. The common business communication language. Al-
bert Endres and Jürgen Reetz, eds., Textverarbeitung und Bürosysteme.
Munich: Oldenbourg, 1982.

[29] Meyer, J. J., and Wieringa, R. J., eds. Deontic logic in computer sci-
ence. New York: Wiley, 1993.

[30] Moore, Scott A. Saying and doing: uses of a formal language in the
conduct of business. Dissertation, Ph.D., University of Pennsylvania,
1993.

[31] Moore, Scott A. A communication framework for applications. Pro-
ceedings, Hawaii International Conference on System Sciences (1995).

[32] Moore, Scott A. Testing speech act theory and its applicability to EDI
and other computer-processable messages. Proceedings of the 29th An-
nual Hawaii International Conference on System Sciences – 1996, vol.
2, 30–38.

[33] Moore, Scott A., and Kimbrough, Steven O. Message management sys-
tems at work: prototypes for business communication. Journal of Or-
ganizational Computing 5.2 (1995) 83–100.

[34] Morris, C. W. Foundations of the theory of signs. (International ency-
clopedia of unified science, vol. 1, no. 2.) Chicago: University of Chicago
Press, 1938.

[35] Raskin, J. F.; Tan, Y. H.; and van der Torre, L. W. N. Modeling deon-
tic states in Petri nets. Report WP–1994–12–01, EURIDIS, Erasmus
University, Rotterdam.

[36] Reid, Glenn C. PostScript language program design. Reading, Mass.:
Addison-Wesley, 1988.

[37] Scowen, Roger, ed. Prolog — part 1, general core. ISO/IEC 13211–
1:1995. Geneva: International Organization for Standardization.

[38] Searle, J. R. Speech acts. Cambridge: Cambridge University Press,
1969.

22

[39] Wexelblat, Richard L., ed. History of programming languages. New
York: Academic Press, 1981.

23

