
How Latent Semantic Indexing Solves the
Pachyderm Problem

Michael A. Covington
Institute for Artificial Intelligence

The University of Georgia

2011

1 Introduction

Here I present a brief mathematical demonstration of how latent semantic indexing (LSI)
solves the “pachyderm problem,” the problem of indirect similarity between texts.

For brevity, I omit all background information about LSI.

I assume that the reader is familiar with ways of comparing individual texts by vocabulary,
and has at least a vague memory of matrix multiplication.

2 The pachyderm problem

Elephants and pachyderms are essentially the same thing. (The word pachyderm originally
denoted a class of animals, but since 1950 it has rarely been used to mean anything other
than ‘elephant.’)

What this means is that if you are looking for texts about elephants, you probably want
texts that mention pachyderms (even if they don’t mention elephants at all), and vice versa.
I call this the pachyderm problem.

How can a computer know that pachyderms and elephants are alike? Mainly by noticing
that most texts that mention one of them also mention the other, and have other similar
vocabulary; more generally, that elephant and pachyderm usually occur in the same contexts.

That is, the computer needs to recognize indirect similarities. Maybe text A does not
directly resemble text B, but if A resembles C, D, and E, and B also resembles C, D, and E,
then A and B should count as similar after all.

1

Analogous to the pachyderm problem is what we might call the run problem. To run a
race is not the same as to run a computer program, and texts that contain the word run
should not count as similar unless they have more in common than just that one word.
That is, we want different instances of run to behave differently when they are in different
contexts. Although I won’t demonstrate it, LSI solves the run problem too.

3 A term-document matrix

Here is a made-up matrix of terms and their frequencies in different documents. You can
see that Document 3 and Document 6 present the pachyderm problem: they are not a bit
alike, but they both resemble Documents 4 and 5.

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6
apple 2 3 0 0 0 0
pear 3 4 0 0 0 0
elephant 0 0 2 2 3 0
pachyderm 0 0 0 2 4 2

We normally compare documents by comparing columns in this matrix. I’m going to as-
sume you know various ways of doing this, such as vector comparison. You probably also
know some ways of making vector comparison more effective, such as tf·idf weighting to
de-emphasize the uninformative words. All those methods are just as applicable with LSI
as without it. What we’re going to do is transform this matrix in a way that solves the
pachyderm problem.

4 Singular value decomposition

From here on we’ll treat our term-document matrix as a matrix of numbers:

M =

2 3 0 0 0 0
3 4 0 0 0 0
0 0 2 2 3 0
0 0 0 2 4 2

Singular value decomposition is a way of splitting any matrix M into three matrices
U , D, and V T which, when multiplied together, give you back the original matrix:

M = U DV T

D is a diagonal matrix; that is, everything off its main diagonal is zero.

2

Notice also the notation V T , which means that the matrix V that comes out of the decom-
position algorithm needs to be flipped about its diagonal. In the following examples, that
will be done.

The matrices have other special properties that are best appreciated by looking at an exam-
ple. The singular value decomposition of our matrix M is:

−0.59 0.00 0.00 0.81
−0.81 0.00 0.00 −0.59
0.00 0.63 −0.78 0.00
0.00 0.78 0.63 0.00

6.16 0 0 0
0 6.07 0 0
0 0 2.03 0
0 0 0 0.16

−0.59 −0.81 0.00 0.00 0.00 0.00
0.00 0.00 0.21 0.46 0.82 0.26
0.00 0.00 −0.77 −0.15 0.08 0.62
−0.81 0.59 0.00 0.00 0.00 0.00

Roughly, the left-hand matrix U shows the relationships between the rows of the original
one (although how this works is hard to see here because the original matrix doesn’t have
an overwhelmingly noticeable pattern). The right-hand matrix V T shows the relationships
between the columns of the original matrix. And the middle matrix D (called Σ in some
books) shows how to mix them.

5 Now for an approximation...

Looking at the middle matrix D, you’ll notice that not only are all the nonzero numbers on
the main diagonal, they are sorted. The biggest numbers are at the top left.

What would happen if you chopped off the bottom right part of D — that is, set it to zero?
It shouldn’t change the result very much, since you’re only removing the smallest factor.

In fact, if you change the middle matrix to

6.16 0 0 0
0 6.07 0 0
0 0 2.03 0
0 0 0 0

(making the change shown in boldface), you’ll no longer be using the last column of the
left-hand matrix, nor the last row of the right-hand matrix. (You’ll just be multiplying them
by zero.) In effect, you’ve whittled down the whole structure to this:

−0.59 0.00 0.00
−0.81 0.00 0.00
0.00 0.63 −0.78
0.00 0.78 0.63

6.16 0 0

0 6.07 0
0 0 2.03

−0.59 −0.81 0.00 0.00 0.00 0.00
0.00 0.00 0.21 0.46 0.82 0.26
0.00 0.00 −0.77 −0.15 0.08 0.62

Do the multiplication, and you still get a surprisingly good approximation of the original
matrix:

3

Original:

2 3 0 0 0 0
3 4 0 0 0 0
0 0 2 2 3 0
0 0 0 2 4 2

 Reconstructed:

2.11 2.92 0.00 0.00 0.00 0.00
2.92 4.06 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 3.00 0.00
0.00 0.00 0.00 2.00 4.00 2.00

Not bad! We threw away some numbers and hardly lost any information at all. (All these
calculations were done with more significant digits than you see printed on the page.)

Let’s do some more whittling. Let’s trim the whole thing down to just two singular values
(two numbers in the middle matrix) and the rows and columns that use them:

−0.59 0.00
−0.81 0.00
0.00 0.63
0.00 0.78

[6.16 0
0 6.07

] [
−0.59 −0.81 0.00 0.00 0.00 0.00
0.00 0.00 0.21 0.46 0.82 0.26

]

What happens if we multiply these together? Not surprisingly the approximation is not as
good as before. But it is bad in a useful way. Here’s what we get:

Original:

2 3 0 0 0 0
3 4 0 0 0 0
0 0 2 2 3 0
0 0 0 2 4 2

 Reconstructed:

2.11 2.93 0.00 0.00 0.00 0.00
2.92 4.06 0.00 0.00 0.00 0.00
0.00 0.00 0.79 1.76 3.13 0.98
0.00 0.00 0.98 2.19 3.89 1.21

The conspicuous errors are the numbers shown in boldface, and look what has happened —
they’ve somehow become a lot more like columns 4 and 5.

That is, singular value decomposition has solved the pachyderm problem. The frequencies of
elephant and pachyderm have been blurred together. Recall that columns 3 and 6 were the
odd ones, the ones that should have resembled each other but didn’t. Now they do.

6 Using the right-hand matrix alone

The other important thing that has happened is that we can compare documents by com-
paring the columns of the right-hand matrix V T , rather than the original or reconstructed
matrix. That is, we don’t have to do the reconstruction. It is obvious, looking at this
right-hand matrix: [

−0.59 −0.81 0.00 0.00 0.00 0.00
0.00 0.00 0.21 0.46 0.82 0.26

]
4

that the first two columns are in one class and the latter four are in another. That is,
Documents 1 and 2 resemble each other, and Documents 3, 4, 5, and 6 resemble each other.
We have deliberately thrown away the row that would have been troubled by the pachyderm
problem.

Some books refer to the rows of V , which are the same as the columns of V T .

7 Folding-in

What if you want to compare the documents in the matrix with a document (or maybe a
query) that was not around when you computed the singular value decomposition? You
could put it into the original matrix and start over. But there is a shortcut. You can “fold
it in.”

Suppose the query contains elephant three times and none of the other terms. Then it
corresponds to this column:

Q =

0
0
3
0

Let Uk, Dk, and V T

k stand for our trimmed versions of the three matrices (originally U , D,
and V T , but we’ve trimmed them to k singular values).

We will need to transpose Uk (flip it about its main diagonal) to get UT
k , and compute the

inverse of Dk to get D−1
k . Then we transform Q as follows:

Qk = D−1
k UT

k Q =

[
0.00
0.31

]
which can be compared directly to columns in V T

k . (Do the comparison by performing vector
comparison just as you would have done in the original term-document matrix.) You see
that this query is a perfect match for Documents 3, 4, 5, and 6, and no match at all for 1
and 2.

8 Implementation note

In this example I dealt with four words in six documents by limiting the decomposition to
two singular values.

5

In real life, you are likely to have perhaps ten thousand words, hundreds of documents,
and maybe 200 singular values. It is helpful to do tf·idf weighting before performing the
decomposition.

9 Examples in R

Here is a term-document matrix that has the pachyderm problem:

> m

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6

apple 2 3 0 0 0 0

pear 3 4 0 0 0 0

elephant 0 0 2 2 3 0

pachyderm 0 0 0 2 4 2

Note that Doc3 and Doc6 are only indirectly related; they both resemble Doc4 and Doc5
but do not resemble each other.

Let’s take the singular value decomposition of the matrix.

> svd(m)

$d

[1] 6.1623 6.0728 2.0302 0.1623

$u

[,1] [,2] [,3] [,4]

[1,] -0.5847 0.000 0.000 0.8112

[2,] -0.8112 0.000 0.000 -0.5847

[3,] 0.0000 0.627 -0.779 0.0000

[4,] 0.0000 0.779 0.627 0.0000

$v

[,1] [,2] [,3] [,4]

[1,] -0.5847 0.0000 0.00000 -0.8112

[2,] -0.8112 0.0000 0.00000 0.5847

[3,] 0.0000 0.2065 -0.76742 0.0000

[4,] 0.0000 0.4631 -0.14973 0.0000

[5,] 0.0000 0.8229 0.08426 0.0000

[6,] 0.0000 0.2566 0.61769 0.0000

Here d needs to be made into a diagonal matrix and v needs to be transposed. Doing this,
and storing the three matrices in variables:

6

> d <- diag(svd(m)$d)

> u <- svd(m)$u

> vt <- t(svd(m)$v)

Now we have:

> d

[,1] [,2] [,3] [,4]

[1,] 6.162 0.000 0.00 0.0000

[2,] 0.000 6.073 0.00 0.0000

[3,] 0.000 0.000 2.03 0.0000

[4,] 0.000 0.000 0.00 0.1623

> u

[,1] [,2] [,3] [,4]

[1,] -0.5847 0.000 0.000 0.8112

[2,] -0.8112 0.000 0.000 -0.5847

[3,] 0.0000 0.627 -0.779 0.0000

[4,] 0.0000 0.779 0.627 0.0000

> vt

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.5847 -0.8112 0.0000 0.0000 0.00000 0.0000

[2,] 0.0000 0.0000 0.2065 0.4631 0.82287 0.2566

[3,] 0.0000 0.0000 -0.7674 -0.1497 0.08426 0.6177

[4,] -0.8112 0.5847 0.0000 0.0000 0.00000 0.0000

Multiply them back together:

> u %*% d %*% vt

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2 3 0.000e+00 0 0 0.000e+00

[2,] 3 4 0.000e+00 0 0 0.000e+00

[3,] 0 0 2.000e+00 2 3 -1.363e-16

[4,] 0 0 1.055e-16 2 4 2.000e+00

That’s a very close approximation to the original matrix. Let’s zero out d[4,4]. That is
equivalent to also zeroing out the last column of u and the last row of vt.

> d[4,4] <- 0

Multiply them again:

> u %*% d %*% vt

7

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2.107 2.923 0.000e+00 0 0 0.000e+00

[2,] 2.923 4.055 0.000e+00 0 0 0.000e+00

[3,] 0.000 0.000 2.000e+00 2 3 -1.363e-16

[4,] 0.000 0.000 1.055e-16 2 4 2.000e+00

Very little change. Let’s also zero out d[3,3]:

> d[3,3] <- 0

Multiply again:

> u %*% d %*% vt

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2.107 2.923 0.0000 0.000 0.000 0.0000

[2,] 2.923 4.055 0.0000 0.000 0.000 0.0000

[3,] 0.000 0.000 0.7863 1.763 3.133 0.9769

[4,] 0.000 0.000 0.9769 2.191 3.893 1.2137

This is still mostly unchanged, but columns 3 and 6 suddenly resemble columns 4 and 5 (and
each other) a lot more than they used to. We’ve solved the pachyderm problem.

As a shortcut, you can give arguments to the svd() function to tell it to limit itself to a
specific number of singular values.

Literature

The computations described here, but not the notation, are based on:

Manning, Christopher R.; Raghavan, Prabhakar; and Schütze, Hinrich (2009) Introduction
to Information Retrieval. Cambridge: Cambridge University Press. Free text on line at
http://nlp.stanford.edu/IR-book/.

The algorithm for singular value decomposition can be found in the Numerical Recipes books
by Press et al. for various programming languages.

8

