
Research Report AI��������

E�cient Prolog� A Practical Guide

Michael A� Covington

Arti�cial Intelligence Programs

The University of Georgia

Athens� Georgia �����

August ��� ��	�

Abstract

Abstract� Properly used� Prolog is as fast as any language with com�

parable power� This paper presents guidelines for using Prolog e��

ciently� Some of these guidelines rely on implementation� dependent

features such as indexing and tail recursion optimization� others are

matters of pure algorithmic complexity�

Many people think Prolog is ine�cient� This is partly because of the poor
performance of early experimental implementations� but another problem is
that some programmers use Prolog ine�ciently�

Properly used� Prolog performs automated reasoning as fast as any other
language with comparable power� It is certainly as fast as Lisp� if not faster�
There are still those who rewrite Prolog programs in C �for speed�� but this
is tantamount to boasting� �I can implement the core of Prolog better than
a professional Prolog implementor��

�

This paper will present some practical guidelines for using Prolog e�ciently�
The points made here are general and go well beyond the implementation�
speci�c advice normally given in manuals�

� Think procedurally as well as declara�

tively�

Prolog is usually described as a declarative or non�procedural language� This
is a half�truth� It would be better to say that most Prolog clauses can be
read two ways� as declarative statements of information and as procedures
for using that information� For instance�

in�X�usa� �� in�X�georgia��

means both �X is in the U�S�A� if X is in Georgia� and �To prove that X is
in the U�S�A�� prove that X is in Georgia��

Prolog is not alone in this regard� The Fortran statement

X�Y�Z

can be read both declaratively as the equation x 	 y
z and procedurally as
the instructions LOAD Y� ADD Z� STORE X� Of course declarative readings
pervade Prolog to a far greater extent than Fortran�

Sometimes the declarative and procedural readings con�ict� For example�
Fortran lets you utter the mathematical absurdity X	X
�� More subtly�
the Fortran statements

A � �B�C��D

A � B��C�D�

�

look mathematically equivalent� but they give profoundly di
erent results
when B	��������� C	���������� and D	�������������

Analogous things happen in Prolog� To take a familiar example� the clause

ancestor�A�C� ��

ancestor�A�B�� ancestor�B�C��

is part of a logically correct de�nition of �ancestor�� but it can cause an
endless loop when Prolog interprets it procedurally�

The loop arises because� when B and C are both unknown� the goal ancestor�A�B�
on the right is no di
erent from ancestor�A�C� on the left� The clause simply
calls itself with essentially the same arguments� making no progress toward
a proof� But if the clause is rewritten as

ancestor�A�C� ��

parent�A�B�� ancestor�B�C��

there is no loop because ancestor cannot call itself with the same arguments�

The moral is that to use Prolog e
ectively� one must understand not only the
declarative reading of the program but also the procedures that the computer
will follow when executing it� The limitations of Prolog�s built�in proof pro�
cedures are not �aws in the implementation� they are deliberate compromises
between logical thoroughness and e�cient search�

� Narrow the search�

Searching takes time� and an e�cient program must search e�ciently� In a
knowledge base that lists ���� gray objects but only �� horses� the query

�� horse�X�� gray�X��

�

can be ��� times as fast as the alternative

�� gray�X�� horse�X��

because it narrows the range of possibilities earlier�

Many opportunities to narrow the search space are much more subtle� Con�
sider the problem of determining whether two lists are set�equivalent � that
is� whether they have exactly the same elements� though not necessarily in
the same order�

Two lists are set�equivalent if and only if one of them is a permutation of the
other� One strategy� then� is to generate all the permutations of the �rst list
and compare them to the second list�

set	equivalent�L
�L�� ��

permute�L
�L���

The trouble is that an N�element list has N� permutations� testing the set�
equivalence of two ���element lists can require ��� � ���� comparisons� I
have actually seen someone attempt this in a Prolog program�

It is much faster to sort both lists and compare the results�

set	equivalent�L
�L�� ��

sort�L
�L��� sort�L��L���

An N�element list can be sorted in about N log� N steps � i� e�� about ��
steps per ���element list � and each �step� involves considerably less work
than generating a new permutation� So this technique is faster than the �rst
one by a factor of more than �����

�

� Let uni�cation do the work�

As a classroom exercise I ask my students to write a predicate that accepts a
list and succeeds if that list has exactly three elements� Some of the weaker
answers that I get look like this�

has	three	elements�X� ��

length�X�N��

N � ��

Slightly better are those that say

has	three	elements�X� ��

length�X����

thereby letting the built�in pattern�matcher test whether length returns ��
But the best students cut the Gordian knot by writing�

has	three	elements�
	�	�	���

The point is that
	�	�	� matches any three�element list and nothing else�
Uni�cation does all the work�

Uni�cation can even rearrange the elements of a data structure� Here is a
predicate that accepts a list and generates� from it� a similar list with the
�rst two elements swapped�

swap	first	two�
A�B�Rest��
B�A�Rest���

Again� uni�cation does all the work� More precisely� the data structures

A�B�Rest� and
B�A�Rest�� or templates for them� are created when the
program is compiled� and uni�cation gives values to the variables at run time�

�

� Avoid assert and retract�

Beginners tend to overuse the assert and retract predicates to modify
the knowledge base� There are two good reasons not to do so� assert and
retract are relatively slow� and� perhaps more importantly� they lead to
messy logic�

Even the slowness is twofold� It takes appreciable time to perform an assert

or retract� Further� in most implementations� a predicate that has been �or
can be� modi�ed by assert or retract cannot run at full compiled speed��
�ALS Prolog is a striking exception��

More importantly� the haphazard use of assert and retract confuses the
program logic� The e
ects of assert and retract are not undone by back�
tracking� By contrast� most predicates return their results by instantiating
variables� these instantiations are discarded if the overall goal fails� and you
get only the results of computations that have succeeded� If you use assert
as a general way to store temporary data� you will end up unable to tell
whether the data came from successful computations� This can make pro�
grams very hard to debug�

The normal way to store temporary information is to pass it along from
one step to the next as arguments to procedures� The legitimate uses of
assert and retract are to record new knowledge in the knowledge base
�in a program that �learns�� and� less commonly� to store the intermediate
results of a computation that must backtrack past the point at which it
gets its result� Even in the latter case� the built�in predicates bagof and
setof often provide a better way to collect alternative solutions into a single
structure� They are implemented in hand�optimized machine code and are
faster than anything you could construct in Prolog�

�

� Understand tokenization�

The internal memory representation of data in Prolog can be quite di
erent
from the printed representation� The fundamental unit is the term� of which
there are three types� numbers� atoms� and structures� Numbers are stored in
�xed�point or �oating�point binary� the same as in most other programming
languages� Atoms and structures have representations speci�c to Prolog�

Atoms are stored in a symbol table in which each atom occurs only once�
atoms in the program are replaced by their addresses in the symbol table�
This is called interning or tokenization of the atoms� and it is performed
whenever Prolog reads atoms and recognizes them as such � when loading
the program� accepting queries from the keyboard� or even accepting input
at run time with the read predicate� Whenever an atom exists� it is in the
symbol table�

Because of tokenization� a Prolog data structure can be much shorter than it
looks� repeated occurrences of the same atom take up little additional space�
Despite its appearance� the structure

f��What a long atom this seems to be��

�What a long atom this seems to be��

�What a long atom this seems to be��

is very compact � possibly smaller than g�aaaaa�bbbbb�ccccc�� The mem�
ory representations of these two structures are shown in Figure ��

Further� atoms can be compared more quickly than anything else except
numbers� To compare two atoms� even long ones� the computer need only
compare their addresses� By contrast� comparing lists or structures requires
every element to be examined individually�

Consider for example the following two tests�

a �� b

�

aaaaaaaa �� aaaaaaab

Without tokenization� the second test would take longer because it would be
necessary to compare eight corresponding characters instead of just one� In
Prolog� however� the second test is just as fast as the �rst� because all that
it does is verify that two addresses in the symbol table are di
erent� The
strings aaaaaaaa and aaaaaaab were assigned to distinct addresses once and
for all when they were �rst tokenized�

� Avoid string processing�

Character string handling is rarely needed in Prolog except to convert print�
able strings into more meaningful structures� The input to a natural language
parser� for instance� should be

the�dog�chased�the�cat�

rather than

�the dog chased the cat�

so that the bene�ts of tokenization can be obtained�

Character strings in Prolog are bulky� Whereas abc is a single atom� the
string �abc� is a list of numbers representing ASCII codes� i� e��
����������
Recall that a list� in turn� is a head and a tail held together by the functor
���� so that
��������� is really ���������������� ����� represented internally
as shown in Fig� �� Strings are designed to be easily taken apart� their
only proper use is in situations where access to the individual characters is
essential�

�

Arity�Prolog has an alternative type of string� written �abc� or the like� that
is stored compactly but not interned in the symbol table� This is important
because there is usually a limit on the number of symbols in the table� a
program with lots of textual messages can avoid hitting this limit by using
��strings instead of long atoms�

The built�in predicate read tokenizes its input� Many implementations pro�
vide predicates that are like read except that they accept input from a list of
characters� With such a predicate� it is easy to preprocess a character string
to make it follow Prolog syntax� then convert it to a Prolog term�

	 Recognize tail recursion�

Because Prolog has no loop structures� the only way to express repetition
is through recursion� Variables that change value from one iteration to the
next must be passed along as arguments� thus�

count�N� ��

write�N�� nl�

NewN is N�
�

count�NewN��

Recursion can be ine�cient because� in general� each procedure call requires
information to be saved so that control can return to the calling procedure�
Thus� if a clause calls itself ���� times� there will be ���� copies of its stack
frame in memory�

There is one exception� Tail recursion is the special case in which control
need not return to the calling procedure because there is nothing more for
it to do� In this case the called procedure can be entered by a simple jump
without creating a stack frame�

Most Prologs recognize tail recursion and transform it into iteration so that
repeated execution does not consume memory� In Prolog� tail recursion exists
when�

�

�� the recursive call is the last subgoal in the clause�

�� there are no untried alternative clauses�

�� there are no untried alternatives for any subgoal preceding the recursive
call in the same clause�

Figure � shows a tail recursive predicate and three predicates that are not
tail recursive for di
erent reasons�

A tail recursive predicate normally contains one or more tests to stop the
recursion� These must normally precede the recursive clause� thus�

count	to	
���X� ��

X �
���

�� succeed and do nothing ��

count	to	
���X� ��

X ��
���

write�X�� nl�

NewX is X�
�

count	to	
���NewX��

However� the recursive clause can be followed by other clauses if� at the time
of the call� they will have been ruled out by cuts or by indexing �see below��

The lack of conventional loop constructs is not a �aw in Prolog� On the
contrary� it makes it easier to prove theorems about how Prolog programs
behave� For years� mathematicians have dealt with repetitive patterns by
using inductive proofs � that is� by substituting recursion for iteration�
Prolog does the same thing� After years of using both Prolog and Pascal
almost daily� I �nd the Prolog approach to repetition less error�prone�

��

 Let indexing help�

To �nd a clause that matches the query

�� f�a�b��

the Prolog system does not look at all the clauses in the knowledge base �
only the clauses for f� Associated with the functor f is a pointer or hash�
ing function that sends the search routine directly to the right place� This
technique is known as indexing�

Many implementations carry this further by indexing on not only the predi�
cate� but also the principal functor of the �rst argument� In such an imple�
mentation� the search considers only clauses that match f�a�� � � � and neglects
clauses such as f�b�c��

First�argument indexing is a trade�o
� Its intent is to save execution time
and� even more importantly� to save memory by reducing the need to record
backtrack points� But the indexing process itself complicates the search by
requiring more analysis of the thing being searched for� Indexing on the
principal functor of the �rst argument represents a reasonable compromise�

Indexing has two practical consequences� First� arguments should be ordered
so that the �rst argument is the one most likely to be known at search time�
and preferably the most diverse� With �rst�argument indexing� the clauses

f�a�x��

f�b�x��

f�c�x��

can often be searched in one step� whereas the clauses

f�x�a��

f�x�b��

f�x�c��

��

always require three steps because indexing cannot distinguish them�

Second� indexing can make a predicate tail recursive when it otherwise would
not be� For example�

f�x�A�B�� �� f�A��

f�q��

is tail recursive even though the recursive call is not in the last clause� be�
cause indexing eliminates the last clause from consideration� any argument
that matches x�A�B� cannot match q� The same is true of list processing
predicates of the form

f�
Head�Tail������ �� ���

f�
�������

because indexing distinguishes non�empty lists from
��

� Use mode declarations�

Normally� Prolog assumes that each of the arguments to a predicate may be
instantiated or uninstantiated� This results in compiled code that branches
to several alternative versions of each procedure in order to handle all the
combinations�

Most compilers provide a mode statement that allows you to rule out some of
the alternatives and thereby speed up execution� For instance� the predicate

capital	of�georgia�atlanta��

can be used with either argument instantiated� or both� or none� but if written
as

��

�� mode capital	of������

capital	of�georgia�atlanta��

it requires the �rst argument to be instantiated and the second to be unin�
stantiated�

Add mode declarations cautiously after the code has been debugged� At least
one manual warns ominously that if the mode declarations are violated� �In
some cases� the program will work� In others� your program will produce
erroneous results or not work at all��

The ideal Prolog compiler would perform data�ow analysis and generate at
least some of its mode declarations automatically�

�� Work at the beginning of the list�

The only directly accessible element of a list is the �rst one� It pays to
perform all manipulations there and avoid� as far as possible� traversing the
whole length of the list�

Sometimes this entails building the list backward� After all� there is nothing
sacred about the left�to�right order in which lists are normally printed� For
example� a program that solves a maze might record its steps by adding them
at the beginning of a list� The result is a list giving the path� backward�

Working at the beginning of the list can really pay o
 in e�ciency� A classic
example is a way of reversing a list� The familiar� ine�cient �naive reverse�
predicate is the following�

reverse�
��
���

reverse�
H�T��Result� ��

reverse�T�ReversedT��

append�ReversedT�
H��Result��

��

But reversing an N�element list this way takes time proportional to N ��
One factor of N comes from the fact that reverse is called once for each list
element� The other factor of N comes from append�ReversedT�
H��Result�
because append has to step through all the elements of ReversedT in order
to get to the end and attach
H�� This takes time proportional to the length
of ReversedT� which in turn is proportional to N�

A faster way to reverse a list is to extract elements one by one from the
beginning of one list and add them at the beginning of another� This requires
a three�argument procedure� where the third argument is used to return the
�nal result�

fast	reverse�List
�List�� ��

fr�List
�
��List���

fr�
Head�Tail��SoFar�Result� ��

fr�Tail�
Head�SoFar��Result��

fr�
��SoFar�SoFar��

The �rst clause of fr transfers the �rst element of
Head�Tail� to SoFar�
then calls itself to do the same thing again� When
Head�Tail� becomes
empty� the second clause of fr uni�es SoFar with Result� The process takes
linear time�

�� Avoid CONSing�

In Prolog� as in Lisp� it is much easier to examine existing structures than
to create new ones� Creating new structures �known in Lisp as CONSing�
requires dynamic allocation of memory�

If� therefore� the same computation can be done with or without CONSing�
the version that avoids CONSing will be faster� Often� CONSing is avoided

��

simply by working at the beginning of the list� Sterling and Shapiro illustrate
this with two algorithms to test whether one list is a sublist of another�

Another way to avoid CONSing is to build structures by progressive instanti�
ation rather than by copying� Most Prolog predicates that modify structures
do so by building� from the original structure� a new one that is di
erent in
some way� append� reverse� and similar list manipulations are familiar ex�
amples� The alternative is to add information to a structure by instantiating
parts of it that were originally uninstantiated�

For example� the list
a�b�c�X� can be turned into
a�b�c�d�Y�� without
CONSing� simply by instantiating X as
d�Y�� Such a list� with an uninstan�
tiated tail� is called an open list� The same principle can be used to build
open trees and open data structures of other shapes�

The problem with
a�b�c�X� is that the only way to get to the X is to work
down the list starting at a� Although this does not require CONSing� it does
take time� Processing can go faster if another instance of X is kept outside
the list where it can be accessed directly� The resulting structure is called a
di
erence list and has the form

f�
a�b�c�X��X�

where f is any two�argument functor� the in�x operators and � are often
used for the purpose� and the above list is written
a�b�c�X��X or the like�

Di
erence lists can be concatenated very quickly � once � by instantiating
the tail of the �rst list to the whole of the second list� The �rst list then be�
comes the result of the concatenation� there is no third� concatenated� list to
be produced� This is the Prolog equivalent of the LISP function RPLACD� It
is somewhat less destructive because� like all Prolog instantiations� di
erence
list concatenations are undone upon backtracking�

��

�� Conclusion

All these techniques for improving e�ciency share a common thread ! aware�
ness of procedural aspects of a declarative language� This does not mean they
are all low�level� inelegant �tricks� that purists should ignore�

Some of the techniques are low�level� such as indexing and tail recursion
optimization� Prolog would still be Prolog if these features were eliminated
or changed radically� The decision to index on the principal functor of the
�rst argument is certainly arbitrary� and if indexing went away tomorrow�
some programs would lose e�ciency but none would lose correctness�

Other techniques� however� are purely algorithmic� Even when stated declar�
atively� algorithms consist of steps� and one algorithm can have more steps
than another� It will always be faster to test the set�equivalence of lists by
sorting than by permuting� simply because there are too many permutations�
and no conceivable implementation can change this fact�

Between the two extremes are data�structure�dependent techniques such as
working at the beginning of a list� The �rst element of every list is the most
accessible� not because of some quirk of implementation� but because the
underlying semantics of Prolog says that
a�b�c� is really ��a���b���c�
�����
An optimizing implementation might provide faster access to list elements
that are theoretically hard to get to� just as an optimizing Fortran compiler
can move certain statements outside of loops� but one should not rely on the
implementor to make the language more e�cient than its semantics calls for�

Acknowledgement

I want to thank Don Potter for helpful suggestions� All opinions and errors
in this paper are of course my own�

References

��� D�H�D� Warren and L�M� Pereira� �Prolog � The Language and its
Implementation Compared with Lisp�� ACM SIGPLAN Notices� Vol�

��

��� No� �� August ����� pp� ���!����

��� Quintus Prolog User�s Guide� Quintus Computer Systems� Mountain
View� Calif�� version �� for release ���� ����� p� ���

��� Using the Arity�Prolog Interpreter and Compiler� Arity Corporation�
Concord� Mass�� ����� p� ����

��� ALS Prolog ���� Applied Logic Systems� Syracuse� N�Y�� �����

��� R�A�O�keefe� �On String Concatenation�� Prolog Digest� Vol� �� No� ����

��� Arity�Prolog ���� Arity Corporation� Concord� Mass�� �����

��� Building Arity�Prolog Applications� Arity Corporation� Concord� Mass��
����� p� ���

��� C�S�Mellish� �Some Global Optimizations for a Prolog Compiler�� Jour�
nal of Logic Programming� Vol� �� ����� pp� ��!���

��� S�K�Debray and D�S� Warren� �Automatic Mode Inference for Prolog
Programs�� Proceedings� �	
� Symposium on Logic Programming� IEEE
Computer Society� pp� ��!���

���� L�Sterling and E�Shapiro� The Art of Prolog� Advanced Programming
Techniques� M�I�T� Press� Cambridge� Mass�� ����� p� ����

��

Figure
�

Memory representations of two structures�

f��What a long atom this is��

�What a long atom this is��

�What a long atom this is��

f

What a long ...

Symbol Table

g�aaaaa�bbbbb�ccccc��

Symbol table

g

aaaaa

bbbbb

ccccc

ddddd

��

Figure ��

Internal representation of the list
��������� �equivalent to the string

�abc���

Symbol Table

97 98 99
[]

.

��

Figure ��

Recursion does not consume memory if the recursive call is the very

last step of the calling procedure�

� This predicate is tail recursive

� and can run forever�

test
 �� write�hello�� nl� test
�

� This predicate is not tail recursive

� because the recursive call is not last�

test� �� test�� write�hello�� nl�

� This predicate is not tail recursive

� because it has an untried alternative�

test� �� write�hello�� nl� test��

test� �� write�goodbye��

� This predicate is not tail recursive

� because a subgoal has an untried alternative�

test� �� g� write�hello�� nl� test��

g �� write�starting��

g �� write�beginning��

��

