
Applied Intelligence 13, 259–264, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Defeasible Logic on an Embedded Microcontroller

MICHAEL A. COVINGTON
Artificial Intelligence Center, The University of Georgia, Athens, GA 30602-7415, USA

mc@ai.uga.edu

Abstract. Defeasible logic is a system of reasoning in which rules have exceptions, and when rules conflict,
the one that applies most specifically to the situation wins out. This paper reports a successful application of
defeasible logic to the implementation of an embedded control system. The system was programmed in d-Prolog
(a defeasible extension of Prolog), and the inferences were compiled into a truth table that was encoded on a low-end
PIC microcontroller.

Advantages of defeasible logic include conciseness and correct handling of the passage of time. It is distinct from
fuzzy logic and probabilistic logic, addressing a different set of problems.

Keywords: microcontroller, logic programming, defeasible logic, defaults, embedded systems

1. Defeasible Logic

1.1. A Sample Problem

Consider the following rules for controlling an air
conditioner:

(1) Run the air conditioner when the temperature is
over 78◦.

(2) Do not run the air conditioner when the AC line
voltage is low, unless the temperature is above
81◦ (not just 78◦). (This reduces demand when the
power company is heavily loaded.)

(3) Never run the air conditioner if it was turned off
less than 4 minutes ago (to protect the compressor).

To a human observer, these seem like perfectly rea-
sonable rules, but according to classical logic, they are
contradictory. Suppose the temperature is 79◦ and the
line voltage is low. Rule (1) says to run the air condi-
tioner and rule (2) says not to. Likewise, rule (3) con-
flicts with rules (1) and (2) whenever the temperature
is high but the air conditioner has just shut off.

The reason that we humans do not notice the con-
tradiction, or at least do not object to it, is that these
rules conform to a familiar pattern of human reasoning
known asDefeasible Logic[1]—logic that can change

its mind, logic in which rules can have exceptions. We
find it intuitively reasonable for the more specific rules
to override the more general ones.

Defeasible logic is what we use when reasoning with
incomplete information, so there is always the possi-
bility of a more specific rule being invoked as we learn
more about the situation. Classical logic is a model of
how we reason when we are sure we know all the rele-
vant facts—which, in real life, is not often. Classical
conclusions are guaranteed true, but defeasible conclu-
sions are only apparently true, based on the available
evidence. To put this another way, defeasible logic is
non-monotonic[2]; further information can cause it to
abandon a conclusion that it would have reached from
fewer premises.

As stated, the rules are not quite a full set. They
do not say what to do when the temperature is below
78◦, nor what to do when the temperature seems to be
above 81◦ but below 78◦ (an impossible situation). We
can remedy this by adding two more rules:

(4) Do not run the air conditioner unless the other rules
say to do so.

(5) If the temperature is over 81◦, then it is necessarily
also over 78◦.

Rules (3) and (5) areabsolute rules, as indicated
by the words “never” and “necessarily”—no other

260 Covington

information can override them. Rules (1), (2), and (4)
aredefeasible rules, which means that they can be
overridden by absolute rules and by defeasible rules
that are more specific.

Defeasible logic provides a natural, concise way for
human beings to describe the conditions under which
things should happen. The remainder of this paper deals
with how to translate defeasible rules into a program
for an embedded controller.

1.2. Defeasible Logic and Human Thinking

Classical logic describes the right way to reason when
all relevant premises are known with complete cer-
tainty. Human beings often find themselves in situa-
tions where they can’t be sure they know all the rele-
vant facts. In such situations they use defeasible logic
or something like it.

Consider for example the “Tweety triangle” (for dia-
gram see [3]). Tweety is an ostrich; ostriches are birds;
birds fly; but ostriches don’t fly. In classical logic, these
premises lead to a contradiction, because they entail
both that Tweety flies (as a bird) and that he doesn’t fly
(being an ostrich). However, in realistic human situa-
tions it is reasonable to treat ostriches as an exception
to the usual properties of birds. If all we know is that
Tweety is a bird, we infer, defeasibly, that he flies; if
we then find out that he is an ostrich, we retract the
conclusion.

There are situations in which “I don’t know” is the
correct conclusion. One of them is the “Nixon dia-
mond” (again, see [3] for diagram). Normally, Quakers
are pacifists and Republicans are not pacifists. Nixon
is a Quaker and a Republican. Is he a pacifist? The cor-
rect answer, reached by Nute’s defeasible logic, is that
with only this information, one cannot tell. Defeasible
logic does not just replace conclusions with different
conclusions; it blocks lines of reasoning that should not
be followed.

Can defeasible logic do anything that classical logic
cannot do? Yes and no. By definition, since its output
is a binary truth table, defeasible logic does nothing
that other logics cannot do. The difference is in how it
does it. Defeasible rules correspond to a natural kind
of human thinking and provide a concise representa-
tion for complex sets of conditions. The whole rea-
son for having programming languages, after all, is to
accommodate the thinking patterns of human beings;
the computer itself would be content with ones and
zeroes.

Figure 1. Strict and defeasible rules.

2. d-Prolog

2.1. Defeasible Inference Engine

A logic programming system that performs defeasible
inference has been developed by Donald Nute [3, 4]. It
is called d-Prolog and is implemented as an extension
of Quintus Prolog. (Though related, d-Prolog is not
the same as the defeasible system recently patented by
Pollock [5, 6].)

As in Prolog, d-Prolog rules are of the form “A if
B and C and D...” with any number of conjoined con-
ditions (Fig. 1). Strict rules denote “if” by the symbol
:- and cannot be overridden; if the conditions are true,
so is the conclusion. Defeasible rules denote “if” by
:= and are overridden by strict rules and by defeasible
rules that take more information into account. For the
complete mechanism see [3, 4]; not all of it is used in
this paper.

Unlike Prolog, d-Prolog expresses negation expli-
citly by the prefixed operatorneg. Thus, given a query
X, the d-Prolog inference engine can conclude any of
four different things:

• “Yes” (X can be inferred andneg X cannot).
• “No” (neg X can be inferred butX cannot).
• “I don’t know” (neitherX norneg X can be inferred).
• “Contradiction” (bothX andneg X can be inferred).

In addition, a “yes” or “no” answer can be absolute or
defeasible depending on whether defeasible rules were
used in deducing it.

Figure 2 shows how the air conditioner control rules
are expressed in d-Prolog. The inputs are four bits,

Defeasible Logic on an Embedded Microcontroller 261

Figure 2. Air conditioner control rules in d-Prolog.

just off (compressor was turned off less than 4 min-
utes ago),volt low (line voltage is low),over 81, and
over 78 (temperature over 81◦ and 78◦ respectively).
The conclusion isrun ac (run the air conditioner) or
neg run ac (don’t run the air conditioner).

In Rule (4),true is a dummy condition that is always
true. Thus, Rule 4 establishes adefault: “Do not
run the air conditioner unless some other rule specifies
otherwise.” The d-Prolog inference engine knows that
true takes no information into account and is therefore
overruled by a defeasible rule with any other set of
conditions.

Intermediate steps of reasoning are of course permit-
ted, although there happen to be none in this example.
A chain such as

a := b.

b := c.

c := d.

d := e.

(whereb, c, andd are neither inputs nor outputs) is just
as legitimate in d-Prolog as in ordinary Prolog.

3. Microcontroller Implementation

3.1. Hardware

Although this rule set is hardly large enough to demon-
strate the full power of defeasible logic, a prototype
air conditioner controller based on it has been imple-
mented on a PIC16F84 microcontroller. The prototype
controls an LED rather than an air conditioner, has
switches rather than thermostats, and uses 4 seconds
rather than 4 minutes as its timeout cycle. Nonetheless,
it demonstrates that the control logic has been imple-
mented correctly.

The PIC16F84 has 1K words of program memory, 64
bytes of RAM, and, in this application, runs at 0.1 MHz,
and costs $6.48 in single quantities. It was chosen for
convenience in programming and testing, since even
cheaper processors are adequate for this application,
such as the PIC12C508 ($1.50).

3.2. Truth Table

Because of its small size, the PIC does not run the
d-Prolog inference engine directly. Instead, it stores
a truth table that was generated by running d-Prolog
on a Sun workstation. The truth table is generated as
follows:

1. Take the list of inputs (inputs in Fig. 2) and negate
some or all of its elements.

2. Assert the resulting set of premises (some affirma-
tive and some negative).

3. Determine whether each of the outputs (also de-
clared in Fig. 2) is true or false. If a contradiction or
a “don’t know” state is discovered, issue a warning
message. (The need for rules (4) and (5) in the air
conditioner system was in fact pointed out by the
inference engine in this manner.)

4. Retract the temporarily asserted premises.
5. Backtrack to step 1 and try a different combination

of negated and un-negated inputs.

The combinations of premises are tried in binary-
number order (visible in Fig. 3), first 00000000 (all
negated), then 00000001, 00000010, 00000011, and so
on, ending with all premises non-negated. This makes it
possible to use the input bit pattern as an offset into the
table, adding it arithmetically to the starting address.

3.3. PIC Software

On the PIC, the truth table is implemented as a subrou-
tine which, given an input bit pattern, returns an output
bit pattern. In our situation there are 4 significant bits
of input,just off,volt low,over 81, andover 78.
These are stored in the four least significant bits of the
input byte, and the truth table has 24 = 16 entries. The
output has only one significant bit,run ac, which is
stored in the lowest bit of the output byte.

The PIC has a particularly strict form of Harvard
architecture, with separate memories for program and
data. There is no way to read data from the program

262 Covington

Figure 3. PIC microcontroller code generated by the d-Prolog program.

memory into data registers. Instead, data tables are im-
plemented as successive RETLW instructions (“return
with literal in W”), each of which contains a byte in
the bottom 8 bits of the 14-bit instruction word. Ac-
cordingly, a table lookup subroutine adds the offset to
the program counter, jumps to the appropriate RETLW,
and returns with the appropriate table entry. Figure 3
shows how it is done; as a precaution, the irrelevant
input bits are masked off to guarantee that execution
does not jump outside the table.

The largest possible truth table, using this technique,
has 8 input bits and up to 8 output bits, and occupies
256 bytes. If that’s not enough, minor changes in im-
plementation can accommodate much larger tables. If
a truth table were all that was needed, it could reside
in a programmable logic array rather than a microcon-
troller, but in typical applications, the services of a CPU
are needed to gather input data and keep time.

4. Scaling to Larger Systems

The system described so far is so small that it would
have been easy to implement with a conventional

programming language or even assembly language.
Clearly, if defeasible logic is advantageous, its advan-
tages will show up in larger systems. Do they?

No large defeasible control systems have been built
yet, but there are grounds for optimism. The knowledge
systems in human minds are, arguably, defeasible, and
they are large. Defeasibility is what makes it possi-
ble to learn exceptions without unlearning the general
principles to which the exceptions apply.

As already mentioned, d-Prolog provides some sim-
ple validation by detecting cases in which the answer is
either “don’t know” or “contradiction.” In this manner,
the need for two of the rules in the sample system was
discovered.

Other, deeper, kinds of validation and optimization
are straightforward to implement. Given a defeasible
rule, the d-Prolog system can identify all the other rules
with which it interacts. (This is already done internally,
and it would be straightforward to display the results.)
Similarly, the system can trace the reasoning actuated
by any particular set of inputs.

The Prolog-like notation of d-Prolog is not carved
in stone. System builders may prefer to express rules

Defeasible Logic on an Embedded Microcontroller 263

“forward,” as in

IF volt low
AND over 78
AND NOT over 81

THEN
NOT run ac

rather than

neg run ac :=
volt low, over 78, neg over 81.

Such a notation is easily implemented. In particular,
the symbol:= (intended to represent a double left ar-
row) may distract Pascal and Algol programmers; it
can easily be changed to make the system more user-
friendly.

Farther afield, a graphical representation for defea-
sible rules has been developed [3] and a system for
entering rules into the computer graphically is being
developed (Nute, personal communication).

Are there applications too complex for defeasible
logic? Probably; there are applications too complex for
anything, and in any case, d-Prolog does not exempt
the system builder from the need for clean, modular
design, though it provides more elbow room. What is
important is that some applications come out substan-
tially simpler in defeasible logic than in classical logic
or conventional structured programming. These are the
applications for which d-Prolog is suitable.

5. Further Issues

5.1. Persistence Through Time

Automatic control systems often face situations in
which somethingnormally remains unchanged, or
changes in a particular way, as time passes, but nor-
mal behavior is not absolutely guaranteed.

This is exemplified by a classic problem of temporal
reasoning known as the Yale Shooting Problem, which
consists of the rules:

(1) Normally, a gun that is loaded at timet will still
be loaded at timet + 1.

(2) Normally, a person who is alive at timet will still
be alive at timet + 1.

(3) Normally, a person who is alive and is shot with a
loaded gun at timet will be dead at timet + 1.

All three rules are defeasible: sometimes an adversary
sneaks in and secretly unloads a gun, sometimes a
person dies spontaneously, and some people survive
gunshots. Ordinarily, though, we expect people to die
when shot with a previously loaded gun, and to remain
alive otherwise.

Now suppose the gun was loaded att0 and a person
who is alive gets shot with that gun att0+1. Then is that
person dead att0+2? Defeasible logic correctly infers
“presumably, yes,” because rule (3) is more specific
than rule (2) and therefore overrides it.

Crucially, defeasible logic is not just a logic of
defaults; it is a logic that chooses intelligently between
one default and another.A logic based purely on de-
faults would be stymied in the same situation because
it could not tell which of the three defaults should be
overridden [7, 8].

The Yale Shooting Problem typifies a kind of reason-
ing that pervades embedded control. Things normally
stay the same unless acted upon, and things that are
acted upon normally change in the specified way.

Consider for example the task of feeding a sheet of
paper into a printer. Instead of bullets in the gun, we
need paper in the tray. Normally, (1) ifn sheets are in
the tray at timet , thenn sheets are still available att+1.
But (2) if a sheet is printed att , the number of sheets
remaining att +1 isn−1. And (3) if the tray has been
opened, the number of sheets in it is unknown. Situation
(2) overrides situation (1), and situation (3) blocks a
conclusion without warranting a new conclusion; it is
what Nute calls adefeater, somewhat like “A sick bird
might not fly.”

Embedded controllers perceive time in discrete
units—indeed, one of the common ways to use a mi-
crocontroller is to let its watchdog timer reboot it sev-
eral times a second, whereupon it wakes up, makes a
decision, and goes back to sleep. Thus the sequence
t0, t0 + 1, t0 + 2, . . . , is exactly right for a micro-
controller, even though time in the real world is a
continuum.

5.2. Defeasible Versus Fuzzy Logic

A frequently asked question about defeasible logic is
whether it is anything like fuzzy logic or probabilistic
logic. The answer is, “Not really.” Defeasible logic at-
tacks a quite different set of problems and solves them
in a different way.

There are two ways to use defeasible reasoning.
We can use it simply as a more concise and human-
friendly notation for formulas that could be expressed

264 Covington

in classical logic. In that case, it contributes nothing
to the power of an embedded system, but potentially a
great deal to the ease of programming it. Or we can use
defeasible logic to represent uncertain information, as
in the Yale Shooting Problem. In the latter case, defea-
sible logic represents uncertainty in a quite different
way than other technologies.

The purpose of fuzzy logic is to compute compro-
mises numerically between conflicting conditions that
are both true to a degree. This is not necessarily a mat-
ter of uncertainty; the premises may be perfectly cer-
tain but express judgments that are not binary. In prac-
tice, fuzzy logic programs are numerical models that
are adjusted empirically, like other kinds of numerical
models, to give the desired results [9, 10].

Probabilistic reasoning deals with premises that may
or may not be true, but whose probabilities are known
or estimated.

Neither of these is like defeasible reasoning. To say
that a conclusion is defeasible is not to say that it is
true only to a degree (as in fuzzy logic) nor that it
has only a certain probability of being true. Defeasible
logic makes no claims about likelihood; it only claims
that if a conclusion is defeasible, further information
can cause it to be overridden. To characterize the defea-
sibility further, one enumerates the kinds of premises
that would cause the conclusion to be withdrawn. One
need not know the likelihood of these premises actually
turning out to be true.

Used in this way, defeasible logic models human rea-
soning from incomplete information. Instead of dealing
precisely with every situation (as in classical logic), hu-
man beings make generalizations that cover most sit-
uations, then enumerate the exceptions by means of
more specific rules. Defeasible logic allows the de-
signer of an embedded control system to describe a
complex truth table this way, using generalities and ex-
ceptions, rather than requiring exceptionless classical
rules or numerical parameters.

6. Conclusions

Defeasible logic should take its place alongside fuzzy
logic, probabilistic reasoning, and conventional com-
puter programming in the embedded system designer’s

toolkit. It isn’t the solution to every problem, but in the
right cases, it provides a convenient design method-
ology that leads to rapid implementation. In particu-
lar, the literature on fuzzy logic sometimes expresses a
wish for other non-classical reasoning techniques (see
for example [11]), and defeasible logic is one of them.

Acknowledgments

An earlier version of this paper was presented at
IEA-AIE 1997. I want to thank Donald Nute, David
Billington, and Don Potter for encouragement and
assistance with this project.

References

1. D. Nute, “Basic defeasible logic,” inIntensional Logics for Pro-
gramming, edited by L. Fari˜nas del Cerro and M. Penttonen,
Oxford University Press: Oxford, pp. 125–154, 1992.

2. G. Antoniou,Nonmonotonic Reasoning, MIT Press: Cambridge,
Mass., 1997.

3. D. Nute, “Defeasible prolog,” inProlog Programming in Depth,
2nd ed., edited by M. Covington, D. Nute, and A. Vellino,
Prentice-Hall: Upper Saddle River, N.J., pp. 345–405, 1997.

4. D. Nute, “d-Prolog: an implementation of defeasible logic in
Prolog,” inNon-Monotonic Extensions of Logic Programming:
Theory, Implementation, and Applications,edited by J. Dix,
L.M. Pereira, and T. Przymusinski, pp. 161–182. Research
Report 17/96, Institut f¨ur Informatik, University of Koblenz-
Landau, 1996.

5. J.L. Pollock, “How to reason defeasibly,”Artificial Intelligence,
vol. 57, pp. 1–42, 1992.

6. J.L. Pollock, “Architecture for an artificial agent that reasons
defeasibly,” United States Patent 5,706,406, January 6, 1998.

7. S. Hanks and D. McDermott, “Nonmonotonic logic and temporal
projection,”Artificial Intelligence, vol. 33, pp. 379–412, 1987.

8. E. Sandewall and Y. Shoham, “Non-monotonic temporal reason-
ing,” in Handbook of Logic in Artificial Intelligence and Logic
Programming,edited by D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, Clarendon Press: Oxford, vol. 4, pp. 439–498, 1995.

9. J. Bezdek, “Editorial: fuzzy models—what are they, and why?”
in Fuzzy Logic Technology and Applications,edited by R.J.
Marks II, IEEE: New York, pp. 3–7, 1992.

10. H. Surmann, A.P. Ungering, T. Kettner, and K. Goser, “What
kind of hardware is necessary for a fuzzy rule based system?” in
Proceedings, Third IEEE Conference on Fuzzy Systems,IEEE:
New York, vol. 1, pp. 274–278, 1994.

11. R. Jager, H.B. Verbruggen, and P.M. Bruijn, “Demystification
of fuzzy control,” in Fuzzy Reasoning in Information, Deci-
sion and Control Systems, edited by S.G. Tzafestas and A.N.
Venetsanopoulos, Kluwer: Dordrecht, pp. 165–197, 1994.

