
Typographic Presentation of Prolog Programs

Michael A. Covington
Artificial Intelligence Center
The University of Georgia
Athens, GA 30602–7415
mcovingt@ai.uga.edu

1998 May 27

Abstract

Like human languages, programming languages are easier to read if they take ad-
vantage of the conventions of fine typography, including the use of italics and boldface
to distinguish different kinds of material. plTEX is a software tool that implements
elegant typesetting of Prolog programs. It accepts Prolog programs that are neatly
laid out and obey some restrictions on the use of comments. From these it generates
input for the LATEX2ε typesetting program. Ordinary atoms are set in boldface type;
variables are in italics; quoted strings are in typewriter type with spaces marked; and
comments are in roman. The alignment of material arranged into columns is preserved.

1 Introduction

Like human languages, programming languages are easier to read if they take advantage of
the conventions of fine typography, including the use of italics and boldface to distinguish
different kinds of material [1]. Recognizing this, users of Algol-like languages have often
typeset reserved words in boldface and variables in italics [8, 9, 5].

plTEX is a software tool that does something comparable for Prolog. Although some
expositors have used occasional logic symbols in Prolog programs, there is no standard
way to typeset Prolog elegantly. Thus, plTEX introduces a new way of typesetting Prolog
programs.

Figures 1 and 2 show the input to plTEX and the resulting printout. Ordinary atoms are
printed in boldface; variables are in italics; quoted atoms and quoted strings are in typewriter
type with spaces marked; comments are in small type; horizontal alignments are preserved;
and predicate definitions are introduced by prominent headers.

The input to plTEX is a well-laid-out Prolog program subject to two minor restrictions:

• Comments are marked only with %. Comments that begin with %: and %. are treated
specially (see below). The comment delimiters /* and */ are used only on lines by
themselves, to comment out sections of code.

1

%:sum_list(+ListOfNumbers,?Result)

%. Sums the numbers in the list, giving Result. Crashes with an

%. error message if first argument is not a list of numbers.

sum_list([],0). % Empty list sums to 0.

sum_list([First|Rest],N) :- % Add first number to sum of rest.

number(First),

!,

sum_list(Rest,R),

N is First+R.

sum_list(_,0) :- % Catch ill-formed arguments.

errmsg(’First arg of sum_list/2 must be a list of numbers.’).

Figure 1: Input to plTEX.

sum list(+ListOfNumbers, ?Result)
Sums the numbers in the list, giving Result. Crashes with an
error message if first argument is not a list of numbers.

sum list([], 0). % Empty list sums to 0.

sum list([First |Rest],N)← % Add first number to sum of rest.

number(First),
!,

sum list(Rest ,R),
N is First + R.

sum list(, 0)← % Catch ill−formed arguments.

errmsg('First arg of sum list/2 must be a list of numbers.').

Figure 2: Output of plTEX after typesetting by LATEX2ε.

2

• Items whose horizontal alignment is significant must be preceded by at least two spaces
to trigger “smart tabbing.”

plTEX is not a “pretty-printer” in the usual sense; it does not clean up sloppily arranged
code. Rather, its job is to take neat, readable Prolog code and make it better. After all,
programmers normally work with the original (ASCII) version of their programs, not the
plTEX printouts, so it is reasonable to expect the original ASCII to be neatly typed.

Nor is plTEX an extension of Prolog the way Knuth’s WEB [5] is an extension of Pascal.
Prolog already favors short routines and a high comment-to-code ratio, so there is little need
for the enhancements provided by WEB.

The output of plTEX is source code for the LATEX2ε typesetting program [6], a macro
package that runs on top of TEX [2, 3]. The plTEX output file can be fed directly to LATEX2ε
for printing, but usual practice is to extract the program listing and insert it into another
LATEX2ε document. The output of plTEX includes every line of the input, in a comment, to
make it easy to match up the processed version with the original.

2 Fonts, styles, and characters

plTEX uses TEX’s “math mode” as the basis for its typographic style. In math mode, letters
are italicized but punctuation marks are upright, and the spacing between characters is
appropriate; thus TEX produces f([X, Y + Z]) rather than f([X,Y+Z]).

Prolog has no reserved words, so plTEX uses boldface for ordinary atoms (i.e., atoms
that begin with a letter and are not quoted). These comprise almost all predicate names as
well as some atoms and functors used for other purposes.

Quoted atoms and strings are printed in fixed-pitch typewriter type with spaces marked
by .

Code that is commented out by /* */ is printed in smaller type, but is otherwise handled
normally.

Comments are printed in roman type, one size smaller than that used for program code,
and their horizontal position is preserved by “smart tabbing” (see next section). All print-
able ASCII characters can be used in comments; the characters that would normally be
unacceptable to LATEX2ε are automatically replaced by the appropriate codes.

Provision is made for a prominent header at the beginning of each predicate definition.
As shown in Figures 1 and 2, a comment that begins with %: is set in large italics, preceded
by a horizontal line. (Such a comment could be otherwise empty if the horizontal line is all
that is wanted.)

Explanatory comments at the beginning of a predicate definition typically begin with %.

to tell plTEX to pass them to LATEX2ε for processing. This makes it possible for comments
to contain formulas and other special effects.1

Finally, blank lines occupy only 60% of the height of lines of text. This saves paper while
enabling them to serve their purpose as clause separators.

1
plTEX ends each such line with a LATEX line terminator, \\, but if word wrap is desired, the line

terminator can be commented out by ending the special comment with %.

3

3 Character set

In Algol-style typesetting, many authors substitute traditional mathematical symbols for the
ASCII characters that normally represent them. For example, Wirth [9] uses × ↑ ≥ ≤ ¬ for
* ^ >= <= not respectively. Knuth follows suit [4] and uses ≡ for == in C [7].

A number of trial printouts made it evident that plTEX should not do very much of this.
The reason is that although mathematical symbols increase readability, they often leave the
reader in doubt about exactly which Prolog operator is meant. For example, should 6≡ stand
for \== or =\= (which evaluates arithmetic expressions)? The reader of a printed program
shouldn’t have to remember.

The current version of plTEX therefore makes only four character substitutions:

:- ← Prolog “if”
\+ 6` “Not provable”
-> → “If–then”
--> −→ Grammar rule expansion

(Recall that :- and \+ originated as typewritten representations of← and 6` respectively.)
Even these substitutions could be undesirable in material written for beginners.

plTEX also makes many other minor typographic improvements. For example, ! {
} are boldfaced to make them more prominent; [] and =. . have had their inter-character
spacing adjusted; there is a tiny bit of extra space between a functor and its argument list;
and in quoted strings, the single quote and backquote are ' and ` respectively, matching
their appearance on the terminal, rather than TEX’s usual characters ‘ ’.

Figure 3 shows a fuller example of plTEX’s output.

4 Smart tabbing

Programmers often align information into columns. Consider for example this fragment of
a substantial Prolog program:

% align(+List1, first word as list of segments

% +List2, second word as list of segments

% +PrevMove, previous move in alignment process

% +PenaltySoFar, accumulated penalty thus far

% -Result, result as list of pairs

% -Penalty) total penalty for mismatches and skips

which plTEX typesets thus:

% align(+List1, first word as list of segments

% +List2, second word as list of segments

% +PrevMove, previous move in alignment process

% +PenaltySoFar, accumulated penalty thus far

% −Result, result as list of pairs

% −Penalty) total penalty for mismatches and skips

4

parse(+String)
parses string of words as an S constituent.

parse(S)←
parse(s, S , [],T , 0),
fail.

parse().

parse(+Const , +String ,−NewString ,−Tree, +Depth)

called by parse/1; keeps track of depth.

parse(, , , ,D)←
D > 100,
nl,

write('Bailing out of apparent infinite loop.'),nl,

!,

abort.

parse(C , [W |Rest],Rest ,Tree,)←
word(C ,W),
Tree = [C , [W]].

parse(C , String1 , String2 ,Tree,D)←
rule(C ,Clist),
DD is D + 1,
parse list(Clist , String1 , String2 , Subtrees,DD),
Tree = [C |Subtrees].

parse list([C |Cs], String1 , String2 , [Tree|Trees],D)←
parse(C , String1 , StringNext ,Tree,D),
parse list(Cs, StringNext , String2 ,Trees,D).

parse list([], String, String, [],).

Grammar rules

rule(s, [np,vp]). word(d, the).
rule(np, [d,n]). word(n, cat).
rule(vp, [v,np]). word(v, saw).

Figure 3: Another Prolog program typeset by plTEX.

5

The challenge is that programmers work with fixed-pitch type (plain ASCII characters), but
plTEX typesets the same code with proportional-pitch type, in which different strings with
the same number of characters do not necessarily come out the same width. Thus, if plTEX
took no special action, these alignments would be lost.

What plTEX does is break each line into boxes, starting a new box whenever it encounters
a nonblank character preceded by two or more blanks. Each box is padded on the right with
extra blank space so that its total width is always proportional to the number of characters
in it. For example, the line

% +List2, second word as list of segments

is passed to TEX as three boxes,

\plbox{\mbox{\plsmall\rm {\%}}}{008.2}%

\plbox{\mbox{\plsmall\rm +List2,}}{017.5}%

\plbox{\mbox{\plsmall\rm second~word~as~list~of~segments}}{031.9}%

where the number (8.2, 17.5, or 31.9 respectively) is the width in “ex” units, i.e., multiples
of the x-height of the type.

A smart tabbing algorithm similar to this was apparently used in Lettrix, a printer
driver marketed by Hammerlab (New Haven, Ct.) in the mid-1980s. Lettrix substituted
proportional type for fixed-pitch type on the fly and had to infer the intended layout of the
material being printed.

5 Implementation and future development

The current version of plTEX, known as plTEX-1, is written in portable C and runs under
both UNIX and Windows 95. Developed as a rapid prototype, it does not parse com-
mand line arguments; instead, input and output files are identified by redirection (e.g.,
‘pltex <myfile.pl >myfile.tex’).

Future versions will probably be written in Prolog (what else?) and will gather the macro
definitions into a LATEX package rather than placing them with the text; that will facilitate
customization as well as eliminating redundancy.

plTEX-1 makes one pass through the input file, breaking it into tokens and generating
appropriate LATEX2ε code for each token. It performs no syntactic analysis beyond tok-
enization. Doing so would be risky, since Prolog programmers can change the syntax of the
language considerably by means of op declarations. However, unlike Lisp, Prolog provides no
way to change the input tokenization strategy; thus the rules used by plTEX apply reliably
to any Prolog program.

References

[1] Covington, M. A. Computer languages in type. Journal of Scholarly Publishing
26.1:34–41 (1994).

6

[2] Knuth, D. E. Mathematical typography. Bulletin of the American Mathematical Soci-
ety, new series, 1:337–372 (1979).

[3] Knuth, D. E. The TEXbook. Reading, Mass.: Addison-Wesley, 1986.

[4] Knuth, D. E. How to read a WEB. 1986. Reprinted in [5], 179–184.

[5] Knuth, D. E. Literate programming. Stanford: CSLI, 1992.

[6] Lamport, L. LATEX: a document preparation system. 2nd ed. Reading, Mass.: Addison-
Wesley, 1994.

[7] Levy, S., and Knuth, D. E. An example of CWEB. 1990. Reprinted in [5], 341–348.

[8] Naur, P., ed. Revised report on the algorithmic language algol 60. Numerische Math-
ematik 4:420 (1963).

[9] Wirth, N. Algorithms + data structures = programs. Englewood Cliffs, N.J.: Prentice-
Hall, 1976.

7

